-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_density.py
162 lines (138 loc) · 4.33 KB
/
read_density.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
from scipy import interpolate
from scipy.interpolate import CubicSpline
import math
# density_array = np.fromfile('densmap.dat', dtype=float)
# N_da = len(density_array)
# size of simulation box
Lx = 47.72970
Lz = 35.31586
h = 0.05
Nda = 0
for line in open('densmap.dat', 'r'):
vals = np.array( [ float(i) for i in line.split() ] )
Nda += len(vals)
Nx = int( np.round(Lx/h) )
Nz = int( np.round(Lz/h) )
# SOLVED!
# Nx = np.sqrt(Nda*Lx/Lz)
# Nz = Nx*Lz/Lx
# Nx = int( np.round(Nx) )
# Nz = int( np.round(Nz) )
idx = 0
density_array = np.zeros( (Nx+1) * (Nz+1), dtype=float)
for line in open('densmap.dat', 'r'):
vals = np.array( [ float(i) for i in line.split() ] )
density_array[idx:idx+len(vals)] = vals
idx += len(vals)
# SOLVED!
# print(Nx*Nz)
# print(len(density_array))
# b = np.sqrt(N_da*Lx/Lz)
# a = (Lz/Lx)*b
# print("a="+str(a))
# print("b="+str(b))
# print("a*b="+str(a*b))
# print("N_da="+str(N_da))
density_array = density_array.reshape((Nx+1,Nz+1))
density_array = density_array[1:-1,1:-1]
density_array = density_array[int(3*Nx/8):int(5*Nx/8),0:int(Nz/4)]
nx = density_array.shape[0]
nz = density_array.shape[1]
# Meshgrid
x = h*np.arange(0.0,nx,1.0, dtype=float)
z = h*np.arange(0.0,nz,1.0, dtype=float)
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')
grad_x = np.zeros((nx, nz), dtype=float)
grad_z = np.zeros((nx, nz), dtype=float)
# need only the bulk values
for i in range(1, nx-1) :
for j in range (1, nz-1) :
grad_x[i,j] = 0.5*( density_array[i+1,j] - density_array[i-1,j] )/h
grad_z[i,j] = 0.5*( density_array[i,j+1] - density_array[i,j-1] )/h
grad_norm = np.sqrt( np.power( grad_x, 2 ) + np.power( grad_z, 2 ) )
# Test for spline interpolation
# Set-up values
half_den = 50.0
epsilon = 3.5
rectification = 1000
smoothing_tune = 1e-5
in_range = lambda x: (x<(half_den+epsilon))*(x>(half_den-epsilon))
f = np.vectorize(in_range)
cont_points = f(density_array)
x_data = []
z_data = []
f_data = []
for i in range(0,nx):
for j in range (0,nz):
if cont_points[i,j] == 1 :
x_data.append(h*i)
z_data.append(h*j)
f_data.append(density_array[i,j])
m = len(x_data)
x_data_ord = [x_data[0]]
x_data.pop(0)
z_data_ord = [z_data[0]]
z_data.pop(0)
f_data_ord = [f_data[0]]
f_data[0]
dist = np.sqrt( np.power(np.array(x_data)-x_data_ord[0], 2)
+ np.power(np.array(z_data)-z_data_ord[0], 2) )
l = np.argmin(dist)
x_data_ord.append(x_data[l])
x_data.pop(l)
z_data_ord.append(z_data[l])
z_data.pop(l)
f_data_ord.append(f_data[l])
f_data.pop(l)
for k in range(2,m) :
dir_x_prev = x_data_ord[k-1]-x_data_ord[k-2]
dir_z_prev = z_data_ord[k-1]-z_data_ord[k-2]
dist_x = np.array(x_data)-x_data_ord[k-1]
dist_z = np.array(z_data)-z_data_ord[k-1]
p = ( ( dir_x_prev*dist_x + dir_z_prev*dist_z ) < 0 ).astype(int)
dist = np.sqrt( np.power(dist_x, 2) + np.power(dist_z, 2) ) + rectification*p
l = np.argmin(dist)
x_data_ord.append(x_data[l])
x_data.pop(l)
z_data_ord.append(z_data[l])
z_data.pop(l)
f_data_ord.append(f_data[l])
f_data.pop(l)
x_data_ord.append(x_data_ord[0])
z_data_ord.append(z_data_ord[0])
f_data_ord.append(f_data_ord[0])
x_data_ord = np.array(x_data_ord)
z_data_ord = np.array(z_data_ord)
f_data_ord = np.array(f_data_ord)
weight = -np.absolute(f_data_ord-half_den)/epsilon + 1.0
weight = weight / np.sum(weight)
# This approach may create aliasing at the initial (that is also the final) point
tck, u = interpolate.splprep([x_data_ord, z_data_ord], w=weight, s=smoothing_tune, task=0)
unew = np.arange(0, 1.0, 0.005)
out = interpolate.splev(unew, tck)
x_spline = out[0]
z_spline = out[1]
# np.append(x_spline, x_spline[0])
# np.append(z_spline, z_spline[0])
##############
## Plotting ##
##############
# plt.matshow(np.flip(cont_points.transpose(), axis=0), cmap=cm.bone)
# plt.show()
plt.pcolor(X, Z, density_array, cmap=cm.bone)
plt.colorbar()
plt.plot(x_data_ord, z_data_ord, 'rx', markersize=5)
plt.plot(x_spline, z_spline, 'r-')
# plt.contour(np.flip(density_array.transpose(), axis=0))
plt.axis('scaled')
plt.show()
# plt.hist(density_array.reshape((nx*nz,1)), bins=int(np.sqrt(nx*nz)))
# plt.show()
# plt.matshow(np.flip(grad_norm.transpose(), axis=0), cmap=cm.bone)
# plt.contour(grad_norm.transpose())
# plt.colorbar()
# plt.show()