forked from vietnh1009/Yolo-v2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDiceSimple.py
223 lines (174 loc) · 6.76 KB
/
DiceSimple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
import open3d as o3d
import pandas as pd
import Net
import os
from scipy import spatial
import cv2
import matplotlib.pyplot as plt
from pyquaternion import Quaternion
def slice(xyz):
sliceWidth = 0.03
newxyz = xyz
image = np.zeros((448, 448, 3), dtype=np.uint8)
for jfor in range(-1, 2):
II = (newxyz[:, 0] > jfor * sliceWidth - sliceWidth / 2) & (
newxyz[:, 0] < jfor * sliceWidth + sliceWidth / 2)
h, xe, ye = np.histogram2d(newxyz[II, 1], newxyz[II, 2],
(np.linspace(-0.5, 0.5, 449), np.linspace(-0.5, 0.5, 449)))
m = np.max(h)
if m > 0:
h = (h / m * 255).astype(np.uint8)
h[h > 0] = 255
image[:, :, jfor + 1] = h
cv2.imshow("check", image)
cv2.waitKey(1)
return image
class Samples():
def __init__(self):
self.df = pd.DataFrame()
def add(self, predictions, spot, vectors):
predictions = predictions[0]
for pi in range(len(predictions)):
pred = predictions[pi]
dict = {}
dict['coord'] = [(pred[0], pred[1])]
dict['bx'] = [pred[2]]
dict['by'] = [pred[3]]
dict['objectness'] = [pred[4]]
dict['class'] = [pred[5]]
dict['xyz'] = [spot]
dict['vectors'] = [vectors.flatten()]
df = pd.DataFrame(dict, index = [0])
if len(self.df) == 0:
self.df = df
else:
self.df = self.df.append(df, ignore_index = True)
def save(self, fileName):
self.df.to_pickle(fileName)
def load(self, fileName):
print("Loading {}".format(fileName))
self.df = pd.read_pickle(fileName)
print("Length = {} samples".format(self.df.shape[0]))
return self.df
def filter(self, classNumber):
self.df = self.df[self.df['class']==classNumber]
def filterGreater(self, field, value):
self.df = self.df[self.df[field]>value]
def __getitem__(self, item):
if len(self.df):
row = self.df.iloc[item]
coord = (np.array(row['coord']) - 448//2)/448
vectors = row['vectors'].reshape(3,3)
xyz = row['xyz']
radius = (row['bx'] + row['by'])/4.0/448
center = xyz + vectors[:,1] * (coord[1] + radius) + vectors[:,2] * (coord[0] + radius)
return (center, radius)
def __len__(self):
if len(self.df):
return self.df.shape[0]
else:
return 0
def defineGridsProjected(xyz):
"""
Make three sets of three dimensional grids.
Locations and vectors for extraction need to be defined.
:return:
"""
mins = np.min(xyz, axis=0)
maxs = np.max(xyz, axis=0)
iranges = []
focusDirection = 0
for ifor in range(3):
r = maxs[ifor] - mins[ifor]
if ifor == focusDirection:
stepSize = param['smallStep']
else:
stepSize = param['bigStep']
# Only shrink the big step directions
if r > param['W']:
mins[ifor] += param['W'] / 2.0
maxs[ifor] -= param['W'] / 2.0
r = r - param['W']
iranges.append(np.linspace(mins[ifor], maxs[ifor], np.ceil(r / stepSize) + 1))
X, Y, Z = (iranges[0], iranges[1], iranges[2])
total = np.prod([X.shape[0], Y.shape[0], Z.shape[0]])
print('Number of grids = {} x {} x {} = {}: '.format(X.shape[0], Y.shape[0], Z.shape[0], total), end="")
return [X, Y, Z]
def makeVectors(theta, elevation):
theta_quat = Quaternion(axis=[0, 0, 1], angle=theta)
vprime = theta_quat.rotate([0, 1., 0.])
print(vprime)
phi_quat = Quaternion(axis=vprime, angle=-elevation)
spherical = phi_quat * theta_quat
# print("{}\n".format(theta_quat.rotation_matrix))
# print("{}\n".format(phi_quat.rotation_matrix))
# print("{}\n".format((phi_quat.rotation_matrix).dot(theta_quat.rotation_matrix)))
# print("{}\n".format(spherical.rotation_matrix))
return spherical.rotation_matrix
class Dice():
# Vectors
V1 = np.identity(3)
V2 = V1[:, [1,2,0]]
V3 = V1[:, [2,0,1]]
VV = [V1, V2, V3]
def __init__(self, fileIn, fileOut, samples, model):
self.samples = samples
self.model = model
fileIn = os.path.expanduser(fileIn)
print("Loading file {}".format(fileIn))
self.pcd = o3d.io.read_point_cloud(fileIn)
self.xyz = np.asarray(self.pcd.points)
print("File loaded with {} points".format(self.xyz.shape[0]))
self.build_KDTree()
fortyFive = np.pi/4
for theta in [0, fortyFive, 2*fortyFive, 3*fortyFive]:
if theta == 0:
eRange = [-fortyFive, 0, fortyFive, 2*fortyFive]
else:
eRange = [-fortyFive, 0, fortyFive]
for elevation in eRange:
vectors = makeVectors(theta, elevation)
projected = self.xyz.dot(vectors)
XYZprojected = defineGridsProjected(projected)
self.scanGrids(XYZprojected, vectors)
self.samples.save(fileOut)
def build_KDTree(self):
print("Building kd Tree")
self.tree = spatial.KDTree(self.xyz)
print("KD Tree complete")
def getSample(self, sampleLocation, vec, sphereSize=1.5):
subsetIndicies = self.tree.query_ball_point(x=sampleLocation, r=sphereSize)
region = self.xyz[subsetIndicies, :]
region = region - sampleLocation
projection = np.matmul(region, vec)
return slice(projection)
def scanGrids(self, XYZ, vectors):
R = np.sqrt(0.5**2 + 0.5**2 + 0.5**2)
spot = 0
x1Index = 0
x2Index = 1
x3Index = 2
for x2 in XYZ[x2Index]:
for x3 in XYZ[x3Index]:
for x1 in XYZ[x1Index]:
if spot and spot % 100 == 0:
print(".", end="", flush=True)
loc = np.array([x1, x2, x3]). dot(np.linalg.inv(vectors))
sampleImage = self.getSample(loc, vectors, R)
predictions = self.model(sampleImage)
if len(predictions) != 0:
self.samples.add(predictions, loc, vectors)
spot = spot + 1
print("")
if __name__ == '__main__':
Ready = True
if Ready:
param = {'bigStep' : 0.65,
'smallStep' : 0.06,
'W' : 1}
S = Samples()
Yolo = Net.Yolo()
#D = Dice('~/sites/tetraTech/BoilerRoom/chunkSmallest.pcd', 'superPoints/pointsDataFrameB.pkl', S, Yolo)
D = Dice('~/cheap.pcd', 'superPoints/chunk_cheapC.pkl', S, Yolo)
# D = Dice('~/sites/tetraTech/BoilerRoom/full_5mm.pcd', 'superPoints/full_5mm.pkl', S, Yolo)