-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 14.8 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
r_node_id,
")",
"<br>",
round(volume_percent_difference * 100, digits = 1),
"%"
),
) %>%
group_by(node_type) %>%
group_split()
names(predicted_actual_node_day_part) <- c("Entrance", "Exit", "Freeway_Segment")
usethis::use_data(predicted_actual_node_day_part,
overwrite = TRUE,
compress = "xz", internal = FALSE
)
# Hourly Data: By Node, Aggregated to Day part ------------------------------------------
predicted_actual_corridor_day_part <- hr_node_diff %>%
mutate(
day_part = case_when(
hour >= 7 & hour <= 9 ~ "Morning, 7-9AM",
hour >= 11 & hour <= 13 ~ "Midday, 11AM-1PM",
hour >= 16 & hour <= 18 ~ "Evening, 4-6PM"
) %>%
factor(levels = c("Morning, 7-9AM", "Midday, 11AM-1PM", "Evening, 4-6PM")),
day_part_short = case_when(
hour >= 7 & hour <= 9 ~ "morning",
hour >= 11 & hour <= 13 ~ "midday",
hour >= 16 & hour <= 18 ~ "evening"
),
# year = "2021",
month_year = paste(month.name[month], year),
day_type = "Weekday"
) %>%
group_by(day_part, day_type, day_part_short, month_year, year, corridor_route) %>%
summarize(across(c(actual_volume, predicted_volume), sum)) %>%
ungroup() %>%
group_by(day_part, corridor_route) %>%
mutate(
rollmean_sum = shift(frollapply(actual_volume, 7, mean, align = "right")),
rollmean_pred = shift(frollapply(predicted_volume, 7, mean, align = "right"))
) %>%
mutate(
rollmean_percent = rollmean_sum / rollmean_pred,
volume_percent_difference = (actual_volume - predicted_volume) / predicted_volume
) %>%
filter(
# !is.na(rollmean_percent),
!is.na(day_part),
day_type == "Weekday"
) %>%
mutate(
hover_observe_text = stringr::str_wrap(paste0(
"<b>", month_year, " ", "</b>",
", the ", "<b>observed</b> ", "average total weekday volume in the ",
"<b>", day_part_short, "</b>", " was ",
format(round(actual_volume), big.mark = ","), " vehicles"
), width = 30),
hover_predict_text = stringr::str_wrap(paste0(
"<b>", month_year, " ", year, "</b>",
", the ", "<b>expected</b> ", " average total weekday volume in the ",
"<b>", day_part_short, "</b>", " was ",
format(round(predicted_volume), big.mark = ","), " vehicles"
), width = 30)
)
usethis::use_data(predicted_actual_corridor_day_part,
overwrite = TRUE,
compress = "xz", internal = FALSE
)
predicted_actual_corridor_hour
hr_node_diff
str(hr_node_diff)
# Hourly Data: By Node, Aggregated to Day part ------------------------------------------
predicted_actual_corridor_day_part <- hr_node_diff %>%
mutate(
day_part = case_when(
hour >= 7 & hour <= 9 ~ "Morning, 7-9AM",
hour >= 11 & hour <= 13 ~ "Midday, 11AM-1PM",
hour >= 16 & hour <= 18 ~ "Evening, 4-6PM"
) %>%
factor(levels = c("Morning, 7-9AM", "Midday, 11AM-1PM", "Evening, 4-6PM")),
day_part_short = case_when(
hour >= 7 & hour <= 9 ~ "morning",
hour >= 11 & hour <= 13 ~ "midday",
hour >= 16 & hour <= 18 ~ "evening"
),
# year = "2021",
month_year = paste(month.name[month], year)
) %>%
group_by(day_part, day_type, day_part_short, month_year, year, corridor_route) %>%
summarize(across(c(actual_volume, predicted_volume), sum)) %>%
ungroup() %>%
group_by(day_part, corridor_route) %>%
mutate(
rollmean_sum = shift(frollapply(actual_volume, 7, mean, align = "right")),
rollmean_pred = shift(frollapply(predicted_volume, 7, mean, align = "right"))
) %>%
mutate(
rollmean_percent = rollmean_sum / rollmean_pred,
volume_percent_difference = (actual_volume - predicted_volume) / predicted_volume
) %>%
filter(
# !is.na(rollmean_percent),
!is.na(day_part),
day_type == "Weekday"
) %>%
mutate(
hover_observe_text = stringr::str_wrap(paste0(
"<b>", month_year, " ", "</b>",
", the ", "<b>observed</b> ", "average total weekday volume in the ",
"<b>", day_part_short, "</b>", " was ",
format(round(actual_volume), big.mark = ","), " vehicles"
), width = 30),
hover_predict_text = stringr::str_wrap(paste0(
"<b>", month_year, " ", year, "</b>",
", the ", "<b>expected</b> ", " average total weekday volume in the ",
"<b>", day_part_short, "</b>", " was ",
format(round(predicted_volume), big.mark = ","), " vehicles"
), width = 30)
)
## Hourly Data: By Node -----
# this data aggregates at the monthly level instead of daily level to keep file size reasonable
hr_node_diff <-
ROracle::dbGetQuery(tbidb, "SELECT * FROM RTMC_HOURLY_NODE_DIFF_MON_NOW") %>%
rename(
"r_node_name" = "NODE_NAME",
"year" = "DATA_YEAR",
"month" = "DATA_MONTH",
"hour" = "DATA_HOUR",
"actual_volume" = "TOTAL_VOLUME",
"predicted_volume" = "VOLUME_PREDICT"
) %>%
left_join(node_config, by = c("r_node_name" = "r_node_name")) %>%
mutate(month_year = paste(month.name[month], year)) %>%
# Weekdays only in this particular view due to line in RTMC_HOURLY_NODE_DIFF_MON:
# WHERE TO_CHAR (DATA_DATE, 'DY', 'NLS_DATE_LANGUAGE=ENGLISH') NOT IN ('SAT', 'SUN')
mutate(day_type = "Weekday")
hr_node_diff <- left_join(hr_node_diff, nodes)
predicted_actual_node_day_part <- hr_node_diff %>%
mutate(
day_part = case_when(
hour >= 7 & hour <= 9 ~ "Morning, 7-9AM",
hour >= 11 & hour <= 13 ~ "Midday, 11AM-1PM",
hour >= 16 & hour <= 18 ~ "Evening, 4-6PM"
) %>%
factor(levels = c("Morning, 7-9AM", "Midday, 11AM-1PM", "Evening, 4-6PM")),
day_part_short = case_when(
hour >= 7 & hour <= 9 ~ "morning",
hour >= 11 & hour <= 13 ~ "midday",
hour >= 16 & hour <= 18 ~ "evening"
),
r_node_id = stringr::str_remove_all(r_node_name, "rnd_")
) %>%
filter(
r_node_n_type != "Intersection",
r_node_n_type != ""
) %>%
group_by(
day_part, day_type, day_part_short, month_year,
r_node_lat, r_node_lon,
r_node_name, r_node_id, r_node_n_type, r_node_label, corridor_route
) %>%
summarize(across(c(actual_volume, predicted_volume), sum)) %>%
ungroup() %>%
group_by(day_part, r_node_name) %>%
mutate(
rollmean_sum = shift(frollapply(actual_volume, 7, mean, align = "right")),
rollmean_pred = shift(frollapply(predicted_volume, 7, mean, align = "right"))
) %>%
mutate(
rollmean_percent = rollmean_sum / rollmean_pred,
volume_percent_difference = (actual_volume - predicted_volume) / predicted_volume
) %>%
filter(
# !is.na(rollmean_percent),
!is.na(day_part),
day_type == "Weekday"
) %>%
mutate(
node_type = case_when(
r_node_n_type == "Station" ~ "Freeway Segment",
TRUE ~ r_node_n_type
),
user_month_year = factor(month_year,
levels = c(
## 2020
"January 2020",
"February 2020",
"March 2020",
"April 2020",
"May 2020",
"June 2020",
"July 2020",
"August 2020",
"September 2020",
"October 2020",
"November 2020",
"December 2020",
## 2021
"January 2021",
"February 2021",
"March 2021",
"April 2021",
"May 2021",
"June 2021",
"July 2021",
"August 2021",
"September 2021",
"October 2021",
"November 2021",
"December 2021"
),
ordered = TRUE
),
hover_text = paste(
sep = "",
"<b>",
month_year,
"</b>",
"<br>",
day_part,
"<br>",
node_type,
" on ",
corridor_route,
" at ",
r_node_label,
" (Node ",
r_node_id,
")",
"<br>",
round(volume_percent_difference * 100, digits = 1),
"%"
),
) %>%
group_by(node_type) %>%
group_split()
names(predicted_actual_node_day_part) <- c("Entrance", "Exit", "Freeway_Segment")
# Hourly Data: By Node, Aggregated to Day part ------------------------------------------
predicted_actual_corridor_day_part <- hr_node_diff %>%
mutate(
day_part = case_when(
hour >= 7 & hour <= 9 ~ "Morning, 7-9AM",
hour >= 11 & hour <= 13 ~ "Midday, 11AM-1PM",
hour >= 16 & hour <= 18 ~ "Evening, 4-6PM"
) %>%
factor(levels = c("Morning, 7-9AM", "Midday, 11AM-1PM", "Evening, 4-6PM")),
day_part_short = case_when(
hour >= 7 & hour <= 9 ~ "morning",
hour >= 11 & hour <= 13 ~ "midday",
hour >= 16 & hour <= 18 ~ "evening"
)
) %>%
group_by(day_part, day_type, day_part_short, month_year, year, corridor_route) %>%
summarize(across(c(actual_volume, predicted_volume), sum)) %>%
ungroup() %>%
group_by(day_part, corridor_route) %>%
mutate(
rollmean_sum = shift(frollapply(actual_volume, 7, mean, align = "right")),
rollmean_pred = shift(frollapply(predicted_volume, 7, mean, align = "right"))
) %>%
mutate(
rollmean_percent = rollmean_sum / rollmean_pred,
volume_percent_difference = (actual_volume - predicted_volume) / predicted_volume
) %>%
filter(
# !is.na(rollmean_percent),
!is.na(day_part),
day_type == "Weekday"
) %>%
mutate(
hover_observe_text = stringr::str_wrap(paste0(
"<b>", month_year, " ", "</b>",
", the ", "<b>observed</b> ", "average total weekday volume in the ",
"<b>", day_part_short, "</b>", " was ",
format(round(actual_volume), big.mark = ","), " vehicles"
), width = 30),
hover_predict_text = stringr::str_wrap(paste0(
"<b>", month_year, " ", year, "</b>",
", the ", "<b>expected</b> ", " average total weekday volume in the ",
"<b>", day_part_short, "</b>", " was ",
format(round(predicted_volume), big.mark = ","), " vehicles"
), width = 30)
)
before_rollmean<-
hr_node_diff %>%
mutate(
day_part = case_when(
hour >= 7 & hour <= 9 ~ "Morning, 7-9AM",
hour >= 11 & hour <= 13 ~ "Midday, 11AM-1PM",
hour >= 16 & hour <= 18 ~ "Evening, 4-6PM"
) %>%
factor(levels = c("Morning, 7-9AM", "Midday, 11AM-1PM", "Evening, 4-6PM")),
day_part_short = case_when(
hour >= 7 & hour <= 9 ~ "morning",
hour >= 11 & hour <= 13 ~ "midday",
hour >= 16 & hour <= 18 ~ "evening"
),
r_node_id = stringr::str_remove_all(r_node_name, "rnd_")
) %>%
filter(
r_node_n_type != "Intersection",
r_node_n_type != ""
) %>%
group_by(
day_part, day_type, day_part_short, month_year,
r_node_lat, r_node_lon,
r_node_name, r_node_id, r_node_n_type, r_node_label, corridor_route
) %>%
summarize(across(c(actual_volume, predicted_volume), sum)) %>%
ungroup()
after_rollmean <-
hr_node_diff %>%
mutate(
day_part = case_when(
hour >= 7 & hour <= 9 ~ "Morning, 7-9AM",
hour >= 11 & hour <= 13 ~ "Midday, 11AM-1PM",
hour >= 16 & hour <= 18 ~ "Evening, 4-6PM"
) %>%
factor(levels = c("Morning, 7-9AM", "Midday, 11AM-1PM", "Evening, 4-6PM")),
day_part_short = case_when(
hour >= 7 & hour <= 9 ~ "morning",
hour >= 11 & hour <= 13 ~ "midday",
hour >= 16 & hour <= 18 ~ "evening"
),
r_node_id = stringr::str_remove_all(r_node_name, "rnd_")
) %>%
filter(
r_node_n_type != "Intersection",
r_node_n_type != ""
) %>%
group_by(
day_part, day_type, day_part_short, month_year,
r_node_lat, r_node_lon,
r_node_name, r_node_id, r_node_n_type, r_node_label, corridor_route
) %>%
summarize(across(c(actual_volume, predicted_volume), sum)) %>%
ungroup() %>%
group_by(day_part, r_node_name) %>%
mutate(
rollmean_sum = shift(frollapply(actual_volume, 7, mean, align = "right")),
rollmean_pred = shift(frollapply(predicted_volume, 7, mean, align = "right"))
) %>%
mutate(
rollmean_percent = rollmean_sum / rollmean_pred,
volume_percent_difference = (actual_volume - predicted_volume) / predicted_volume
)
nrow(veh_trips)
library(covid.traffic.trends)
gather_data()
covid.traffic.trends::run_daily_app_data()
run_app()
# Set options here
options(
shiny.launch.browser = TRUE,
scipen = 9999,
warn = -1,
verbose = FALSE,
golem.app.prod = FALSE
) # TRUE = production mode, FALSE = development mode
# Detach all loaded packages and clean your environment
# golem::detach_all_attached()
# rm(list=ls(all.names = TRUE))
# remove.packages("council.skeleton", lib="~/R/win-library/3.6")
# remotes::install_github("Metropolitan-Council/council.skeleton", upgrade = "never")
rmarkdown::render("./ABOUT.Rmd",
output_format = "github_document", # -----
output_file = "ABOUT.md", output_dir = "./inst/app/www",
params = list(
actor_id = "roten",
data_date = Sys.Date(),
sha = system("git rev-parse --short HEAD",
intern = TRUE
)
)
)
# Document and reload your package ----
golem::document_and_reload()
# Run the application
run_app()
predicted_actual_by_region
holiday_data <- predicted_actual_by_node %>%
filter(date %in% c('2021-12-24', '2020-12-24', '2019-12-24'))
str(predicted_actual_by_node)
holiday_data <- predicted_actual_by_region %>%
filter(date %in% c('2021-12-24', '2020-12-24', '2019-12-24'))
holiday_data
holiday_data <- predicted_actual_by_region %>%
filter(date %in% c(as.Date('2021-12-24'), as.Date('2020-12-24'), as.Date('2019-12-24')))
holiday_data
predicted_actual_by_region %>%
filter(date %in% c(as.Date('2021-12-24'), as.Date('2020-12-24'), as.Date('2019-12-24')))
predicted_actual_by_region$date %>% summary()
## Daily Data: Entire Region -----
predicted_actual_by_region <-
ROracle::dbReadTable(tbidb, "RTMC_DAILY_SYSTEM_DIFF_NOW") %>%
rename(
"date" = "DATA_DATE",
"actual_volume" = "TOTAL_VOLUME",
"predicted_volume" = "TOTAL_PREDICTED_VOLUME",
"volume_difference_absolute" = "TOTAL_VOLUME_DIFF"
) %>%
mutate(
volume_difference_percent =
round(100 * volume_difference_absolute / predicted_volume, 2)
) %>%
mutate(
District = "MnDOT Metro Freeways",
weekday = format.Date(date, "%A")
) %>%
arrange(date) %>%
mutate(
roll_avg = zoo::rollmean(volume_difference_percent, k = 7, fill = NA),
month_year = format(date, "%B %Y"),
hover_text_roll_avg = paste(
sep = "",
"<b>",
format.Date(date, "%A, %B %d, %Y"),
"</b>",
"<br>",
"Metro 7-day average ",
"<br>",
round(roll_avg, digits = 1),
"%"
),
hover_text = paste(
sep = "",
"<b>",
format.Date(date, "%A, %B %d, %Y"),
"</b>",
"<br>",
round(volume_difference_percent, digits = 1),
"%"
)
)
## code to prepare `predicted_actual` and node-level dataset series goes here
library(covid.traffic.trends)
library(sf)
library(data.table)
library(dplyr)
library(DBI)
library(lubridate)
# For Database Connection:
library(ROracle)
library(keyring)
library(ggplot2)
## Connect to the Database -----
connect.string <- "(DESCRIPTION=(ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = fth-exa-scan.mc.local )(PORT = 1521)))(CONNECT_DATA = (SERVER = DEDICATED)(SERVICE_NAME = com4te.mc.local)))"
tbidb <- ROracle::dbConnect(
dbDriver("Oracle"),
dbname = connect.string,
username = "mts_planning_data",
# mts_planning_view for viewing data only, no write privileges.
# mts_planning_data is the username for write privileges.
password = keyring::key_get("mts_planning_data_pw")
)
# Configure database time zone -------------------------------
Sys.setenv(TZ = "America/Chicago")
Sys.setenv(ORA_SDTZ = "America/Chicago")
## Daily Data: Entire Region -----
predicted_actual_by_region <-
ROracle::dbReadTable(tbidb, "RTMC_DAILY_SYSTEM_DIFF_NOW") %>%
rename(
"date" = "DATA_DATE",
"actual_volume" = "TOTAL_VOLUME",
"predicted_volume" = "TOTAL_PREDICTED_VOLUME",
"volume_difference_absolute" = "TOTAL_VOLUME_DIFF"
) %>%
mutate(
volume_difference_percent =
round(100 * volume_difference_absolute / predicted_volume, 2)
) %>%
mutate(
District = "MnDOT Metro Freeways",
weekday = format.Date(date, "%A")
) %>%
arrange(date) %>%
mutate(
roll_avg = zoo::rollmean(volume_difference_percent, k = 7, fill = NA),
month_year = format(date, "%B %Y"),
hover_text_roll_avg = paste(
sep = "",
"<b>",
format.Date(date, "%A, %B %d, %Y"),
"</b>",
"<br>",
"Metro 7-day average ",
"<br>",
round(roll_avg, digits = 1),
"%"
),
hover_text = paste(
sep = "",
"<b>",
format.Date(date, "%A, %B %d, %Y"),
"</b>",
"<br>",
round(volume_difference_percent, digits = 1),
"%"
)
)
predicted_actual_by_region
predicted_actual_by_region %>% summary()
predicted_actual_by_region %>%
filter(date %in% c(as.Date('2021-12-24'), as.Date('2020-12-24')))
library(covid.traffic.trends)
covid.traffic.trends::run_daily_app_data()
predicted_actual_by_region
tail(LOD Conducting Successful and Legal Interviews )
tail(predicted_actual_by_region)
table_data
table_data %>% tail()
covid.traffic.trends::deploy_app()
covid.traffic.trends::deploy_app()