-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain_tile_pattern.py
213 lines (195 loc) · 7.39 KB
/
main_tile_pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import collections
import math
import multiprocessing as mp
import os
import sys
from functools import partial
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from tap.tap import Tap
import yaml
from loguru import logger
from sklearn.metrics import ConfusionMatrixDisplay
from tqdm import tqdm
import wandb
class Params(Tap):
run_dir: str
slice_width: int = 16
weight: float = 1.0
pattern_sizes: List[int] = [4, 3, 2]
project: str = "mario"
tags: List[str] = ["similarity"]
job_type: str = "eval"
level_dir: str = "input/mario"
def pattern_key(level_slice):
"""
Computes a hashable key from a level slice.
"""
key = ""
for line in level_slice:
for token in line:
key += str(token)
return key
def get_pattern_counts(level, pattern_size):
"""
Collects counts from all patterns in the level of the given size.
"""
pattern_counts = collections.defaultdict(int)
for up in range(level.shape[0] - pattern_size + 1):
for left in range(level.shape[1] - pattern_size + 1):
down = up + pattern_size
right = left + pattern_size
level_slice = level[up:down, left:right]
pattern_counts[pattern_key(level_slice)] += 1
return pattern_counts
def compute_pattern_counts(dataset, pattern_size):
"""
Compute pattern counts in parallel from a given dataset.
"""
levels = [level.argmax(dim=0).numpy() for level in dataset.levels]
with mp.Pool() as pool:
counts_per_level = pool.map(
partial(get_pattern_counts, pattern_size=pattern_size), levels,
)
pattern_counts = collections.defaultdict(int)
for counts in counts_per_level:
for pattern, count in counts.items():
pattern_counts[pattern] += count
return pattern_counts
def compute_prob(pattern_count, num_patterns, epsilon=1e-7):
"""
Compute probability of a pattern.
"""
return (pattern_count + epsilon) / ((num_patterns + epsilon) * (1 + epsilon))
"""
def main():
logger.remove()
logger.add(
sys.stdout,
colorize=True,
format="<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | <level>{level}</level> | <light-black>{file.path}:{line}</light-black> | {message}",
)
hparams = Params().parse_args()
wandb.init(
project=hparams.project,
tags=hparams.tags,
job_type=hparams.job_type,
config=hparams,
)
dataset = LevelSnippetDataset(
level_dir=hparams.level_dir, slice_width=hparams.slice_width,
)
display_labels = sorted([name for name in dataset.level_names])
confusion_matrix_mean_dict = {}
confusion_matrix_var_dict = {}
level_names = []
# The run directory is expected to contain samples from all levels
for run_dir in sorted(os.listdir(hparams.run_dir)):
if not os.path.isdir(os.path.join(hparams.run_dir, run_dir)):
continue
level_name = run_dir
run_dir = os.path.join(hparams.run_dir, run_dir)
# with open(os.path.join(run_dir, "files", "config.yaml"), "r") as f:
# config = yaml.load(f)
# test_level_dir = os.path.join(run_dir, "files", "test_samples", "txt")
# if config["use_multiple_inputs"]["value"]:
# level_name = "lvl_1-inputs" + "_a" + str(config["alpha"]["value"]) + ".txt"
# else:
# level_name = config["input_name"]["value"][:-4] + "_a" + str(config["alpha"]["value"]) + ".txt"
level_names.append(level_name)
divergences_mean = {}
divergences_var = {}
for current_level_name in dataset.level_names:
# Compute TP KL-Div between datasets
level_dataset = LevelSnippetDataset(
level_dir=hparams.level_dir,
slice_width=hparams.slice_width,
level_name=current_level_name,
)
mean_kl_divergence, var_kl_divergence = compute_kl_divergence(
level_dataset, run_dir, hparams
)
divergences_mean[current_level_name] = mean_kl_divergence
divergences_var[current_level_name] = var_kl_divergence
confusion_matrix_mean_dict[level_name] = divergences_mean
confusion_matrix_var_dict[level_name] = divergences_var
# Create confusion matrix
for cm, stat in [
(confusion_matrix_mean_dict, "mean"),
(confusion_matrix_var_dict, "var"),
]:
confusion_matrix = []
table = wandb.Table(
columns=["training level"]
+ [f"KL-divergence from level {i}" for i in range(1, len(display_labels)+1)]
)
for level_name in level_names:
row = []
for current_level_name in display_labels:
row.append(
confusion_matrix_mean_dict[level_name][current_level_name])
confusion_matrix.append(row)
table_row = [level_name] + row
table.add_data(*table_row)
confusion_matrix = np.array(confusion_matrix)
sns.set(context="paper", style="white")
confusion_display = ConfusionMatrixDisplay(
confusion_matrix, [name.split(".")[0].split("_")[-1] for name in level_names],
)
confusion_display.plot()
ax = confusion_display.ax_
ax.set_ylabel("GAN Level")
ax.set_xlabel("Original Level")
plt.tight_layout()
figure_path = os.path.join(
wandb.run.dir, f"confusion_matrix_{stat}.pdf")
plt.savefig(figure_path, dpi=300)
wandb.save(figure_path)
wandb.log(
{
f"confusion_matrix_{stat}": wandb.Image(ax),
f"kl_divergences_{stat}": table,
}
)
def compute_kl_divergence(dataset, test_level_dir, hparams):
logger.info(
"Computing KL-Divergence for generated levels in {}", test_level_dir)
test_dataset = LevelSnippetDataset(
level_dir=test_level_dir,
slice_width=hparams.slice_width,
token_list=dataset.token_list,
)
kl_divergences = []
for pattern_size in hparams.pattern_sizes:
logger.info("Computing original pattern counts...")
pattern_counts = compute_pattern_counts(dataset, pattern_size)
logger.info("Computing test pattern counts...")
test_pattern_counts = compute_pattern_counts(
test_dataset, pattern_size)
num_patterns = sum(pattern_counts.values())
num_test_patterns = sum(test_pattern_counts.values())
logger.info(
"Found {} patterns and {} test patterns", num_patterns, num_test_patterns
)
kl_divergence = 0
for pattern, count in tqdm(pattern_counts.items()):
prob_p = compute_prob(count, num_patterns)
prob_q = compute_prob(
test_pattern_counts[pattern], num_test_patterns)
kl_divergence += hparams.weight * prob_p * math.log(prob_p / prob_q) + (
1 - hparams.weight
) * prob_q * math.log(prob_q / prob_p)
kl_divergences.append(kl_divergence)
logger.info(
"KL-Divergence @ {}x{}: {}",
pattern_size,
pattern_size,
round(kl_divergence, 2),
)
mean_kl_divergence = np.mean(kl_divergences)
var_kl_divergence = np.std(kl_divergences)
logger.info("Average KL-Divergence: {}", round(mean_kl_divergence, 2))
return mean_kl_divergence, var_kl_divergence
"""