-
Notifications
You must be signed in to change notification settings - Fork 0
/
weather_res_net.py
136 lines (107 loc) · 4.92 KB
/
weather_res_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import pandas as pd
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
# Define the Residual Block
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = torch.nn.ReLU(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = torch.nn.ReLU(out)
return out
# Define the ResNet Model
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_input_channels, num_classes):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(num_input_channels, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = torch.nn.ReLU(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = torch.nn.AvgPool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
# Assuming you have training and validation datasets loaded as train_loader and val_loader
# Also assuming the number of input channels (e.g., for an RGB image, it's 3) is `num_input_channels`
num_input_channels = 9
model = ResNet(ResidualBlock, [2, 2, 2, 2], num_input_channels, 1).to(1) # 1 for regression output
criterion = nn.L1Loss() # Mean Absolute Error
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training loop and validation code would go here
class ParquetDataset(Dataset):
def __init__(self, filepath, columns):
self.dataframe = pd.read_parquet(filepath)[columns].values
# Assuming the last column is the target
self.features = self.dataframe[:, :-1]
self.target = self.dataframe[:, -1]
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
return torch.FloatTensor(self.features[idx]), torch.FloatTensor([self.target[idx]])
# Load data from parquet file
FILEPATH = "data-2/A/t.parquet"
COLUMNS = ['list', 'of', 'your', 'columns', 'including', 'the', 'target']
dataset = ParquetDataset(FILEPATH, COLUMNS)
# Split dataset into training and validation sets
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
# Train the model
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}/{num_epochs} - Training loss: {running_loss/len(train_loader)}")
# Validation loop
model.eval()
val_loss = 0.0
with torch.no_grad():
for inputs, targets in val_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item()
print(f"Epoch {epoch+1}/{num_epochs} - Validation loss: {val_loss/len(val_loader)}")