-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
478 lines (408 loc) · 20.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""Main training loop, including the model, loss function, and optimizer."""
import operator
import os
import time
import env
env.set_variables()
import shardlib.shardtypes as shardtypes
shardtypes.register_with_typeguard()
import gcsfs # Needed for clearml setup
import datetime
from functools import cached_property, partial
from typing import Any, Optional, Tuple, Union
import hydra
from typeguard import typechecked
from dataclasses import dataclass
import jax
from jax import lax
from jax.sharding import PartitionSpec
import jax.numpy as jnp
import math
from input_loader import FlatTokensParams, HuggingFaceDataParams, TokenBatch, TokenBatchParams, get_loader
from shardlib.shardtypes import bf16, bool_, f32, pytree_dataclass, u32, make_shardings, Array
import shardlib.shardops as shardops
P = PartitionSpec
import einops
import jax_extra
from jax_extra import fold_in_str, explicit_activation_checkpointing, save_for_backward
import os
import training_io
from clearml import Task
from jax.experimental import mesh_utils
from jax.sharding import Mesh
from jax.tree_util import tree_leaves
PRNGKey = Any
@dataclass(frozen=True)
class Hparams:
d_model: int
n_q_per_kv: int
n_kv: int
d_head: int
layers: int
vocab: int
d_ff: int
rope_max_timescale: int
@pytree_dataclass
class TransformerLayer:
ln1: f32['d_model/t/d']
ln2: f32['d_model/t/d']
w_q: f32['d_model/d n_q_per_kv n_kv/t d_head']
w_kv: f32['2 d_model/d n_kv/t d_head']
w_o: f32['d_model/d n_q_per_kv n_kv/t d_head']
w_gate: f32['d_model/d d_ff/t']
w_up: f32['d_model/d d_ff/t']
w_down: f32['d_model/d d_ff/t']
Transformer = Array['layers', TransformerLayer]
@pytree_dataclass
class Model:
embed: f32['vocab/t d_model/d']
unembed: f32['vocab/t d_model/d']
transformer: Transformer
final_layer_norm: f32['d_model/d/t']
@staticmethod
@typechecked
def init(h: Hparams, rng: PRNGKey) -> 'Model':
embed = jax.random.normal(jax_extra.fold_in_str(rng, 'embed'), (h.vocab, h.d_model), dtype=jnp.float32)
# https://github.com/google/jax/issues/20390 for ones_like with sharding.
ln1 = jnp.ones((h.layers, h.d_model), dtype=jnp.float32)
ln2 = jnp.ones((h.layers, h.d_model), dtype=jnp.float32)
final_layer_norm = jnp.ones((h.d_model,), dtype=jnp.float32)
# All of wi/wq/wo/wo/w_kv use truncated_normal initializers with 'fan_in' scaling,
# i.e. variance set to 1.0/fan_in.
# The constant is stddev of standard normal truncated to (-2, 2)
truncated_normal_stddev = .87962566103423978
# scale for tensors with d_model fan_in and truncated normal truncated to (-2, 2)
d_model_scale = 1 / (math.sqrt(h.d_model) * truncated_normal_stddev)
w_kv_scale = d_model_scale
w_q_scale = d_model_scale / math.sqrt(h.d_head)
total_head_dim = h.n_q_per_kv * h.n_kv * h.d_head
w_o_scale = 1 / (math.sqrt(total_head_dim) * truncated_normal_stddev)
w_up_scale = d_model_scale
w_down_scale = 1 / (math.sqrt(h.d_ff) * truncated_normal_stddev)
unembed_scale = d_model_scale
w_kv_shape = (h.layers, 2, h.d_model, h.n_kv, h.d_head)
w_kv = w_kv_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_kv'), -2, 2, w_kv_shape, dtype=jnp.float32)
w_q_shape = (h.layers, h.d_model, h.n_q_per_kv, h.n_kv, h.d_head)
w_q = w_q_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_q'), -2, 2, w_q_shape, dtype=jnp.float32)
w_kv_shape = (h.layers, 2, h.d_model, h.n_kv, h.d_head)
w_kv = w_kv_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_kv'), -2, 2, w_kv_shape, dtype=jnp.float32)
w_o_shape = w_q_shape
w_o = w_o_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_o'), -2, 2, w_o_shape, dtype=jnp.float32)
ff_shape = (h.layers, h.d_model, h.d_ff)
w_gate = w_up_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_gate'), -2, 2, ff_shape, dtype=jnp.float32)
w_up = w_up_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_up'), -2, 2, ff_shape, dtype=jnp.float32)
w_down = w_down_scale * jax.random.truncated_normal(fold_in_str(rng, 'w_down'), -2, 2, ff_shape, dtype=jnp.float32)
unembed = unembed_scale * jax.random.truncated_normal(fold_in_str(rng, 'unembed'), -2, 2, (h.vocab, h.d_model), dtype=jnp.float32)
arrays = Model(
embed=embed,
unembed=unembed,
transformer=Transformer(
ln1=ln1,
ln2=ln2,
w_q=w_q,
w_kv=w_kv,
w_o=w_o,
w_gate=w_gate,
w_up=w_up,
w_down=w_down,
),
final_layer_norm=final_layer_norm,
)
shardings = make_shardings(Model)
return jax.tree.map(lax.with_sharding_constraint, arrays, shardings)
@typechecked
def forward_pass(self, h: Hparams, ids: u32[b'B/d L'], is_seq_start: bool_[b'B/d L']) -> f32[b'B/d L V/t']:
##### Initial embedding lookup.
embed = shardops.all_gather('V/t M/d -> V/t M', jnp.bfloat16(self.embed))
x = shardops.index_unreduced('[V/t] M, B/d L -> B/d L M', embed, ids)
x = shardops.psum_scatter('B/d L M -> B/d L M/t', x)
L = ids.shape[1]
segment_ids = jnp.cumsum(is_seq_start, axis=1)
segment_mask: bool_[b'B/d L L'] = segment_ids[:, :, jnp.newaxis] == segment_ids[:, jnp.newaxis, :]
segment_mask: bool_[b'B/d L L 1 1'] = segment_mask[..., jnp.newaxis, jnp.newaxis] # add axes for q_per_k, num_kv_heads dimensions
causal_mask: bool_[b'1 L L 1 1'] = jnp.tril(jnp.ones((L, L), dtype=jnp.bool_), 0)[jnp.newaxis, ..., jnp.newaxis, jnp.newaxis]
causal_mask: bool_[b'B/d L L 1 1'] = jnp.logical_and(segment_mask, causal_mask)
rope_table = RopeTable.create(L, h)
##### Transformer blocks.
@explicit_activation_checkpointing
@typechecked
def loop_body(x: bf16[b'B/d L M/t'], layer_weights: TransformerLayer) -> Tuple[bf16[b'B/d L M/t'], Tuple[()]]:
# Pre-attention RMSNorm
ln1 = shardops.all_gather('M/t/d -> M', jnp.float32(layer_weights.ln1))
gx = shardops.all_gather('B/d L M/t -> B/d L M', x)
nx = jnp.bfloat16(rms_norm(gx) * ln1)
# Attention, using Grouped Query Attention and RoPE position embeddings.
w_q = shardops.all_gather('M/d Q K/t D -> M Q K/t D', jnp.bfloat16(layer_weights.w_q))
q = save_for_backward(shardops.einsum_unreduced('B/d L M, M Q K/t D -> B/d L Q K/t D', nx, w_q))
q = rope_table.apply('L D -> 1 L 1 1 D', q)
w_kv = shardops.all_gather('2 M/d K/t D -> 2 M K/t D', jnp.bfloat16(layer_weights.w_kv))
k, v = shardops.einsum_unreduced('B/d L M, k_v M K/t D -> k_v B/d L K/t D', nx, w_kv)
k = save_for_backward(k)
v = save_for_backward(v)
k = rope_table.apply('L d -> 1 L 1 d', k)
logits = shardops.einsum_unreduced(
'B/d Qlen Q K/t D, B/d Klen K/t D -> B/d Qlen Klen Q K/t', q, k, preferred_element_type=jnp.float32)
logits = jnp.where(causal_mask, logits, -1e10)
probs = jnp.bfloat16(jax.nn.softmax(logits, axis=2))
attn_out = shardops.einsum_unreduced(
'B/d Qlen Klen Q K/t, B/d Klen K/t D -> B/d Qlen Q K/t D', probs, v)
w_o = shardops.all_gather('M/d Q K/t D -> M Q K/t D', jnp.bfloat16(layer_weights.w_o))
attn_out = shardops.einsum_unreduced('B/d Qlen Q K/t D, M Q K/t D -> B/d Qlen M', attn_out, w_o)
attn_out = shardops.psum_scatter('B/d Qlen M -> B/d Qlen M/t', attn_out)
x = save_for_backward(x + attn_out)
# Pre-FFN RMSNorm
ln2 = save_for_backward(shardops.all_gather('M/t/d -> M', jnp.float32(layer_weights.ln2)))
gx = shardops.all_gather('B/d L M/t -> B/d L M', x)
nx = jnp.bfloat16(rms_norm(gx) * ln2)
# FFN, using SwiGLU
w_gate = shardops.all_gather('M/d F/t -> M F/t', jnp.bfloat16(layer_weights.w_gate))
gate_proj = save_for_backward(shardops.einsum_unreduced('B/d L M, M F/t -> B/d L F/t', nx, w_gate))
w_up = shardops.all_gather('M/d F/t -> M F/t', jnp.bfloat16(layer_weights.w_up))
up_proj = save_for_backward(shardops.einsum_unreduced('B/d L M, M F/t -> B/d L F/t', nx, w_up))
y = jax.nn.swish(gate_proj) * up_proj
w_down = shardops.all_gather('M/d F/t -> M F/t', jnp.bfloat16(layer_weights.w_down))
ffn_out = shardops.einsum_unreduced('B/d L F/t, M F/t -> B/d L M', y, w_down)
ffn_out = shardops.psum_scatter('B/d L M -> B/d L M/t', ffn_out)
return jnp.bfloat16(x + ffn_out), ()
x, () = jax.lax.scan(loop_body, jnp.bfloat16(x), self.transformer)
##### Final layernorm and output projection.
x = shardops.all_gather('B/d L M/t -> B/d L M', x)
ln = shardops.all_gather('M/t/d -> M', jnp.float32(self.final_layer_norm))
x = jnp.bfloat16(rms_norm(x) * ln)
unembed = shardops.all_gather('V/t M/d -> V/t M', jnp.bfloat16(self.unembed))
logits = shardops.einsum_unreduced('B/d L M, V/t M -> B/d L V/t', x, unembed, preferred_element_type=jnp.float32)
return logits
@typechecked
def loss(self, h: Hparams, batch: TokenBatch) -> f32[b'']:
# Given sequence-packed targets:
# [[1, 2], [3, 4, 5], [6, 7, 8, 9]]
# we want inputs:
# [[0, 1], [0, 3, 4], [0, 6, 7, 8]]
# which we get by shifting the targets right by 1 and
# masking sequence-start tokens to 0.
inputs = jnp.pad(batch.targets[:, :-1], pad_width=((0, 0), (1, 0)))
is_seq_start: bool_[b'batch/d len'] = batch.is_seq_start
inputs: u32[b'batch/d len'] = jnp.where(is_seq_start, 0, inputs)
logits: f32[b'batch/d len V/t'] = self.forward_pass(h, inputs, is_seq_start)
max_logits: f32[b'batch/d len 1'] = lax.pmax(jnp.max(lax.stop_gradient(logits), axis=-1, keepdims=True), 't')
logits = logits - max_logits
sum_logits = lax.psum(jnp.sum(jnp.exp(logits), axis=-1, keepdims=True), 't')
logsumexp = jnp.log(sum_logits)
logprobs: f32[b'batch/d len V/t'] = logits - logsumexp
logprobs_at_targets = shardops.index_unreduced('batch/d len [V/t], batch/d len -> batch/d len', logprobs, batch.targets)
logprobs_at_targets = shardops.psum_scatter('batch/d len -> batch/d len/t', logprobs_at_targets)
tokens_in_global_batch = logprobs_at_targets.size * jax.lax.psum(1, ('d', 't'))
return -jnp.sum(logprobs_at_targets) / jnp.float32(tokens_in_global_batch)
@pytree_dataclass
class RopeTable:
sin: f32['len d_head2']
cos: f32['len d_head2']
@staticmethod
def create(max_len: int, hparams: Hparams) -> 'RopeTable':
rope_max_timescale = hparams.rope_max_timescale
d_head = hparams.d_head
d = d_head // 2
# endpoint=False is equivalent to what MaxText does. endpoint=True would be more natural, though.
timescale = jnp.logspace(0, jnp.log10(jnp.float32(rope_max_timescale)), d, endpoint=False)
position = jnp.arange(max_len, dtype=jnp.int32)
sinusoid_inp = jnp.float32(position[:, jnp.newaxis]) / timescale[jnp.newaxis, :]
sin = jnp.sin(sinusoid_inp)
cos = jnp.cos(sinusoid_inp)
return RopeTable(sin=sin, cos=cos)
def apply(self, rearrange_spec, x):
x1, x2 = jnp.split(x, 2, axis=-1)
sin = einops.rearrange(self.sin, rearrange_spec)
cos = einops.rearrange(self.cos, rearrange_spec)
r1 = x1 * cos - x2 * sin
r2 = x2 * cos + x1 * sin
return jnp.append(r1, r2, axis=-1)
@typechecked
def rms_norm(x: bf16[b'batch/d len M']) -> bf16[b'batch/d len M']:
mean2 = save_for_backward(jnp.mean(jax.lax.square(jnp.float32(x)), axis=-1, keepdims=True))
return jnp.bfloat16(x * jax.lax.rsqrt(mean2 + 1e-6))
@pytree_dataclass
class Metrics:
loss: f32[b'']
learning_rate: f32[b'']
grad_norm: f32[b'']
raw_grad_norm: f32[b'']
@dataclass(frozen=True)
class TrainingHparams:
adam_b1: float
adam_b2: float
adam_eps: float
adam_eps_root: float
weight_decay: float
warmup_steps: int
steps: int
steps_for_lr: int
cosine_learning_rate_final_fraction: float
learning_rate: float
tokens: TokenBatchParams
seed: int
queue: Optional[str] = None
@pytree_dataclass
class State:
weights: Model
adam_mu: Model
adam_nu: Model
@staticmethod
def init(hparams: Hparams, rng: PRNGKey) -> 'State':
weights = Model.init(hparams, rng)
adam_mu = jax.tree.map(lambda p: p * 0.0, weights)
adam_nu = jax.tree.map(lambda p: p * 0.0, weights)
return State(weights=weights, adam_mu=adam_mu, adam_nu=adam_nu)
@partial(jax.jit, static_argnums=(2, 3), donate_argnums=(0,))
def training_step(state: State, step: u32[b''], h: Hparams, hparams: TrainingHparams, batch: TokenBatch) -> Tuple[Any, Metrics]:
@partial(shardtypes.typed_shard_map, check_rep=False) # check_rep=False for https://github.com/google/jax/issues/20335
def sharded_step(state: State, step: u32[b''], batch: TokenBatch) -> Tuple[State, Metrics]:
loss, grad = jax.value_and_grad(lambda weights: weights.loss(h, batch))(state.weights)
# Gradients have already been reduced across chips because the gradient of the weight `all_gather`
# is weight-gradient `psum_scatter`. Loss, on the other hand, hasn't been reduced across chips: if we
# did that inside the autodiff, we'd be double-reducing the loss, effectively multiplying it by the
# amount of data parallelism.
#
# So we reduce the loss across chips _outside_ the autodiff.
loss = jax.lax.psum(loss, ('d', 't'))
# Other than global-norm of gradients, no other communication is needed during the weight update,
# because weights and grads are already fully sharded, as checked below.
# Calculate learning rate from step number.
# We use linear warmup then cosine decay. See https://arxiv.org/pdf/2307.09288.pdf section 2.2
warmup_lr = (jnp.float32(step) / jnp.float32(hparams.warmup_steps)) * hparams.learning_rate
cosine = jnp.cos(jnp.pi * (jnp.float32(step - hparams.warmup_steps) / jnp.float32(hparams.steps_for_lr - hparams.warmup_steps)))
cosine_lr = hparams.learning_rate * (hparams.cosine_learning_rate_final_fraction + (1 - hparams.cosine_learning_rate_final_fraction) * (cosine * .5 + .5))
lr = jnp.where(step < hparams.warmup_steps, warmup_lr, cosine_lr)
# AdamW optimizer with global gradient clipping.
grad_leaves, grad_treedef = jax.tree_util.tree_flatten(grad)
global_norm_square = jnp.float32(0.0)
for g in grad_leaves:
assert g.dtype == jnp.float32
global_norm_square += jnp.sum(jax.lax.square(g))
global_norm_square = jax.lax.psum(global_norm_square, ('d', 't'))
global_norm = jnp.sqrt(global_norm_square)
rescale = jnp.minimum(1.0, 1.0 / global_norm)
new_ps = []
new_mus = []
new_nus = []
for p, g, mu, nu, spec in zip(tree_leaves(state.weights), grad_leaves, tree_leaves(state.adam_mu), tree_leaves(state.adam_nu), tree_leaves(shardtypes.make_partition_specs(State))):
assert shardtypes.is_fully_sharded(spec), 'Weight update is only correctly scaled for fully sharded weights.'
# Gradient clipping
g = g * rescale
# Adam scaling
mu = (1 - hparams.adam_b1) * g + hparams.adam_b1 * mu
nu = (1 - hparams.adam_b2) * jax.lax.square(g) + hparams.adam_b2 * nu
# We need step numbers to start at 1, not 0. Otherwise the bias correction produces NaN.
completed_steps = step + 1
mu_hat = mu / (1 - jnp.float32(hparams.adam_b1)**completed_steps)
nu_hat = nu / (1 - jnp.float32(hparams.adam_b2)**completed_steps)
g = mu_hat / (jnp.sqrt(nu_hat + hparams.adam_eps_root) + hparams.adam_eps)
# Weight decay
g += hparams.weight_decay * p
# Learning rate
g *= lr
# Apply update
new_ps.append(p - g)
new_mus.append(mu)
new_nus.append(nu)
new_state = State(
weights=jax.tree_util.tree_unflatten(grad_treedef, new_ps),
adam_mu=jax.tree_util.tree_unflatten(grad_treedef, new_mus),
adam_nu=jax.tree_util.tree_unflatten(grad_treedef, new_nus),
)
metrics = Metrics(
loss=loss,
learning_rate=lr,
grad_norm=global_norm * rescale,
raw_grad_norm=global_norm,
)
return new_state, metrics
return sharded_step(state, step, batch)
@dataclass(frozen=True)
class Paths:
root_working_dir: str
model_name: str
@dataclass(frozen=True)
class MeshConfig:
d: int
t: int
@dataclass(frozen=True)
class Config:
model: Hparams
training: TrainingHparams
paths: Paths
num_hosts: int
checkpoint_interval: int
mesh: MeshConfig
io: training_io.IOConfig
flat_tokens: Optional[FlatTokensParams] = None
hf_dataset: Optional[HuggingFaceDataParams] = None
def __post_init__(self):
assert self.flat_tokens is not None or self.hf_dataset is not None, 'Must provide either flat_tokens or hf_dataset.'
assert not (self.flat_tokens is not None and self.hf_dataset is not None), 'Should not specify both flat_tokens and hf_dataset.'
@cached_property
def training_data(self) -> Union[FlatTokensParams, HuggingFaceDataParams]:
return self.flat_tokens or self.hf_dataset
def main_contained(config, logger):
"""Main program, which does not access external services except as specified by config.paths or logger."""
# Use partitionable (and hopefully fusable!) RNG.
#
# This is slower in compute time than 'unsafe_rbg' with flag '--xla_tpu_spmd_rng_bit_generator_unsafe=true',
# but hopefully faster in memory time because it's fusable.
# TODO: check this is true and if not, provide our own that actually is fusable.
jax.config.update('jax_threefry_partitionable', True)
with Mesh(mesh_utils.create_device_mesh([config.mesh.d, config.mesh.t], jax.devices()), ('d', 't')):
root_rng = jax.random.PRNGKey(config.training.seed)
loader = get_loader('train', config.training_data, config.training.tokens)
assert config.model.vocab > loader.max_token_id, f"{config.model.vocab} vs {loader.max_token_id}"
model_dir = os.path.join(config.paths.root_working_dir, config.paths.model_name)
training_io.mkdir(model_dir)
state = jax.jit(partial(State.init, config.model))(fold_in_str(root_rng, 'init'))
state, start_step = training_io.load_checkpoint_if_it_exists(model_dir, state, config.io)
# Explicitly compile training step, to record XLA HLO graph.
# See https://bnikolic.co.uk/blog/python/jax/2022/02/22/jax-outputgraph-rev
c_training_step = training_step.lower(state, jnp.uint32(0), config.model, config.training, loader.load(0)).compile()
date = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
training_io.save_hlo_svg(os.path.join(model_dir, f'training_step_optimized_hlo_{date}.svg'), c_training_step)
for step in range(start_step, config.training.steps):
if step % config.checkpoint_interval == 0 and step > start_step:
training_io.save_checkpoint(model_dir, step, state, config.io)
# We profile on the second step, because the first step has a long pause for XLA
# compilation and initial shuffle buffer loading.
if jax.process_index() == 0 and step == start_step + 1:
jax.block_until_ready(state)
training_io.start_profile()
profile_start = time.time()
state, output = c_training_step(state, jnp.uint32(step), loader.load(step))
# Run profile for two steps, to include data loading time in between them.
if jax.process_index() == 0 and step == start_step + 2:
jax.block_until_ready(state)
profile_duration = time.time() - profile_start
training_io.stop_profile(model_dir)
# Print MFU, including (one step of) data loading time.
print(f"Profile time: {profile_duration}s for 2 steps.")
model_params = jax.tree.reduce(operator.add, jax.tree.map(lambda w: w.size, state.weights))
tokens = loader.load(step).targets.size
print(f'Model params: {model_params:_}')
print(f'Tokens: {tokens:_}')
device_flops = training_io.get_flops_per_device()
num_devices = jax.device_count()
print(f'MFU (projections only): {100 * (2 * 6 * model_params * tokens / (num_devices * profile_duration)) / device_flops:.2f}% MFU')
training_io.log(step, logger, output)
@hydra.main(config_path='configs', version_base=None)
def main(config):
config = jax_extra.make_dataclass_from_dict(Config, config)
if config.training.queue:
task = Task.init(project_name='testing', task_name=config.paths.model_name)
logger = task.get_logger()
task.execute_remotely(queue_name=config.training.queue)
task.launch_multi_node(config.num_hosts, wait=True)
if int(os.environ['RANK']) > 0:
task.set_system_tags((task.get_system_tags() or []) + ['hidden'])
jax.distributed.initialize(os.environ['MASTER_ADDR'] + ':' + os.environ['MASTER_PORT'],
num_processes=int(os.environ['WORLD_SIZE']),
process_id=int(os.environ['RANK']))
else:
logger = None
main_contained(config, logger)
if __name__ == "__main__":
main()