forked from yl4579/StyleTTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeldataset.py
210 lines (163 loc) · 6.5 KB
/
meldataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import librosa
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
import os
import os.path as osp
import pandas as pd
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print(text)
return indexes
np.random.seed(1)
random.seed(1)
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300
}
MEL_PARAMS = {
"n_mels": 80,
}
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
class FilePathDataset(torch.utils.data.Dataset):
def __init__(self,
data_list,
sr=24000,
data_augmentation=False,
validation=False,
):
spect_params = SPECT_PARAMS
mel_params = MEL_PARAMS
_data_list = [l[:-1].split('|') for l in data_list]
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
self.text_cleaner = TextCleaner()
self.sr = sr
self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)
self.mean, self.std = -4, 4
self.data_augmentation = data_augmentation and (not validation)
self.max_mel_length = 192
# self.global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
data = self.data_list[idx]
path = data[0]
wave, text_tensor, speaker_id = self._load_tensor(data)
mel_tensor = preprocess(wave).squeeze()
acoustic_feature = mel_tensor.squeeze()
length_feature = acoustic_feature.size(1)
acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
return speaker_id, acoustic_feature, text_tensor, path
def _load_tensor(self, data):
wave_path, text, speaker_id = data
speaker_id = int(speaker_id)
wave, sr = sf.read(wave_path)
if wave.shape[-1] == 2:
wave = wave[:, 0].squeeze()
if sr != 24000:
wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
print(wave_path, sr)
wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
text = self.text_cleaner(text)
text.insert(0, 0)
text.append(0)
text = torch.LongTensor(text)
return wave, text, speaker_id
def _load_data(self, data):
wave, text_tensor, speaker_id = self._load_tensor(data)
mel_tensor = preprocess(wave).squeeze()
mel_length = mel_tensor.size(1)
if mel_length > self.max_mel_length:
random_start = np.random.randint(0, mel_length - self.max_mel_length)
mel_tensor = mel_tensor[:, random_start:random_start + self.max_mel_length]
return mel_tensor, speaker_id
class Collater(object):
"""
Args:
adaptive_batch_size (bool): if true, decrease batch size when long data comes.
"""
def __init__(self, return_wave=False):
self.text_pad_index = 0
self.min_mel_length = 192
self.max_mel_length = 192
self.return_wave = return_wave
def __call__(self, batch):
# batch[0] = wave, mel, text, f0, speakerid
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_text_length = max([b[2].shape[0] for b in batch])
mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
texts = torch.zeros((batch_size, max_text_length)).long()
input_lengths = torch.zeros(batch_size).long()
output_lengths = torch.zeros(batch_size).long()
paths = ['' for _ in range(batch_size)]
for bid, (label, mel, text, path) in enumerate(batch):
mel_size = mel.size(1)
text_size = text.size(0)
mels[bid, :, :mel_size] = mel
texts[bid, :text_size] = text
input_lengths[bid] = text_size
output_lengths[bid] = mel_size
paths[bid] = path
if self.return_wave:
return paths, texts, input_lengths, mels, output_lengths
return texts, input_lengths, mels, output_lengths
def build_dataloader(path_list,
validation=False,
batch_size=4,
num_workers=1,
device='cpu',
collate_config={},
dataset_config={}):
dataset = FilePathDataset(path_list, validation=validation, **dataset_config)
collate_fn = Collater(**collate_config)
data_loader = DataLoader(dataset,
batch_size=batch_size,
shuffle=(not validation),
num_workers=num_workers,
drop_last=(not validation),
collate_fn=collate_fn,
pin_memory=(device != 'cpu'))
return data_loader