-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
217 lines (170 loc) · 6.85 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
##此程序通过设置相似指纹来模拟计算测试数据
from rdkit import Chem
from rdkit import DataStructs
from NNModel import netModule1
from NNModel import netModule2
from tqdm import tqdm
import pandas as pd
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error as mserr
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from scipy.stats import pearsonr
import numpy as np
import math
from sklearn.metrics import mean_absolute_error as mae #MAE
def svmModel1(x_train,y_train,x_val,x_test):
svm_reg = SVR(kernel='rbf',epsilon=0.1, C=100,max_iter=-1,gamma=0.001)
svm_reg.fit(x_train, y_train)
preLabel=svm_reg.predict([x_test])
preValLabel = svm_reg.predict(x_val)
preValLabel = list(preValLabel)
return preLabel, preValLabel
def svmModel2(x_train,y_train,x_val,x_test):
svm_reg = SVR(kernel='rbf',epsilon=0.01, C=1000,max_iter=-1,gamma=0.001)
svm_reg.fit(x_train, y_train)
preLabel=svm_reg.predict([x_test])
preValLabel = svm_reg.predict(x_val)
preValLabel = list(preValLabel)
return preLabel, preValLabel
def randForestModel(x_train,y_train,x_val,x_test):
# y_train=[[i] for i in y_train]
clf = RandomForestRegressor()
clf.fit(x_train,y_train)
preLabel = clf.predict([x_test])
preLabel = list(preLabel)
preValLabel = clf.predict(x_val)
preValLabel = list(preValLabel)
return preLabel,preValLabel
def createSimilar(path1,path2):
df = pd.read_csv(path1, header=0)
saveSimilar=[]
for i in tqdm(range(df['SMILES'].size)):
selfName=df.loc[i,['SMILES']].values[0]
ms1=Chem.MolFromSmiles(selfName)
fp1=Chem.RDKFingerprint(ms1)
tempList=[]
for j in range(df['SMILES'].size):
if i<=j:
ms2 = Chem.MolFromSmiles(df.loc[j,['SMILES']].values[0])
fp2 = Chem.RDKFingerprint(ms2)
tempList.append(DataStructs.FingerprintSimilarity(fp1,fp2))
saveSimilar.append(tempList)
saveSimilarDataFrame=pd.DataFrame(saveSimilar)
saveSimilarDataFrame.to_csv(path2,header=0)
# import os
# fileNameList=os.listdir('./SMILES')
#
# for N in fileNameList:
# path1='./SMILES/'+N
# path2='./smilarCal/'+'saveSimilarDataFrame_'+N.split('s')[0]+'.csv'
# createSimilar(path1,path2)
def addSimlar(path1,path2):
df=pd.read_csv(path1,header=None)
print(df.shape[0])
for i in range(1,df.shape[0]):
keepValues=df.loc[i,].values.tolist()
keepValues=keepValues[:-i]
print('i:{}'.format(i))
for j in range(i):
keepValues.insert(j,df.loc[j,i])
df.loc[i,:]=keepValues
df.to_csv(path2,header=None,index=False)
# print(df)
# import os
# path1='./smilarCal/saveSimilarDataFrame_DHFR.csv'
# path2='./smilarCal/AllSimilarDataFrame_DHFR.csv'
# addSimlar(path1,path2)
# 计算相关度
def computeCorrelation(x,y):
xBar = np.mean(x)
yBar = np.mean(y)
SSR = 0.0
varX = 0.0
varY = 0.0
for i in range(0,len(x)):
diffXXbar = x[i] - xBar
difYYbar = y[i] - yBar
SSR += (diffXXbar * difYYbar)
varX += diffXXbar**2
varY += difYYbar**2
SST = math.sqrt(varX * varY)
return SSR/SST
def sortSmilar(path1,path2):
# 此处将摩根分子指纹的相似性比较高的分子对应序号保存在列表中
df=pd.read_csv(path1,header=None)
saveSort=[]
for i in range(df.shape[0]):
temp=[]
smilarList=df.loc[i,:].values.tolist()
sorted_id = sorted(range(len(smilarList)), key=lambda k: smilarList[k], reverse=True)
for j in range(len(sorted_id)):
if smilarList[sorted_id[j]]!=1:
print(j,smilarList[sorted_id[j]])
temp.append(sorted_id[j])
# if df.shape[0]==len(temp):
# break
saveSort.append(temp)
saveSortDataFrame=pd.DataFrame(saveSort)
saveSortDataFrame.to_csv(path2)
# path1='./smilarCal/AllSimilarDataFrame/AllSimilarDataFrame_DHFR.csv'
# path2='./smilarCal/SortSmilar_DHFR.csv'
# sortSmilar(path1,path2)
def Train(path1,path2,savePath):
print('开始Train程序')
nodeDict1 = {'inputNode': 1024, 'hidNode': 56, 'outNode': 1, 'lr': 0.001, 'epochs': 900}
nodeDict2={'inputNode': 1024, 'hidNode': 102,'hidNode1': 56, 'outNode': 1, 'lr': 0.005, 'epochs': 300}
dfSmilarSort = pd.read_csv('./smilarCal/sortSmilar/SortSmilar_'+path1+'.csv', index_col=0)
dfFinger=pd.read_csv('./ECFP/'+path2+'MorganFingerPrint.csv',index_col=0)
y=[]
pre=[]
allCalList=[]
length=dfFinger.shape[0]
for i in tqdm(range(length)):
sortId=dfSmilarSort.loc[i,:].values.tolist()
valSort =sortId[30:38:2] #验证集在训练数据中的序号
valSort=[int(i) for i in valSort]
x_val=dfFinger.iloc[valSort,:-1].values
y_val=dfFinger.iloc[valSort,-1].values
valSort.append(i)
trainSort=[i for i in range(length) if i not in valSort]
x_test = dfFinger.iloc[i].iloc[:-1].tolist()
y_test = [dfFinger.iloc[i].iloc[-1]]
x_train=dfFinger.iloc[trainSort,:-1].values
y_train=dfFinger.iloc[trainSort,-1].values
y_train=[[i] for i in y_train]
preLabel1,preValLabel1= svmModel1(x_train, y_train,x_val, x_test)
print('--------------------------------------------------------------------------')
preLabel2,preValLabel2 = svmModel2(x_train, y_train, x_val,x_test)
# preLabel2, preValLabel2 = randForestModel(x_train, y_train, x_val, x_test)
r1=r2_score(y_val,preValLabel1)
r2=r2_score(y_val,preValLabel2)
eList1=[i-j for i,j in zip(y_val,preValLabel1)]
eList2 = [i - j for i, j in zip(y_val, preValLabel1)]
e1=sum(eList1)/len(eList1)
e2 = sum(eList2) / len(eList2)
mse1=np.sqrt(mserr(y_val,preValLabel1))
mse2 = np.sqrt(mserr(y_val, preValLabel2))
print(mse1,mse2,e1,e2)
if mse1<mse2:
preLabel=preLabel1[0]
else:
preLabel=preLabel2[0]
err=y_test[0]-preLabel
print(y_test[0],preLabel,preLabel1[0],preLabel2[0],err)
print('y_val', y_val)
print('pre_val',preValLabel1,preValLabel2)
y.append(y_test[0])
pre.append(preLabel)
allCalList.append([y_test[0],preLabel,preLabel1[0],preLabel2[0],err])
print(r2_score(y,pre))
print('RMSE',np.sqrt(mserr(y,pre)))
preDataFrame=pd.DataFrame(allCalList,columns=['y','pre','pre1','pre2','error'])
preDataFrame.to_csv('SVRpreDataFrame'+savePath+'.csv')
if __name__ == '__main__':
# addSimlar()
# Train()
# calR2()
path1=path2=savePath = 'ER@'
Train(path1, path2, savePath)
pass