forked from dataprofessor/population-dashboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app_with_css.py
276 lines (230 loc) · 10 KB
/
streamlit_app_with_css.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#######################
# Import libraries
import streamlit as st
import pandas as pd
import altair as alt
import plotly.express as px
#######################
# Page configuration
st.set_page_config(
page_title="US Population Dashboard",
page_icon="🏂",
layout="wide",
initial_sidebar_state="expanded")
alt.themes.enable("dark")
#######################
# CSS styling
st.markdown("""
<style>
[data-testid="block-container"] {
padding-left: 2rem;
padding-right: 2rem;
padding-top: 1rem;
padding-bottom: 0rem;
margin-bottom: -7rem;
}
[data-testid="stVerticalBlock"] {
padding-left: 0rem;
padding-right: 0rem;
}
[data-testid="stMetric"] {
background-color: #393939;
text-align: center;
padding: 15px 0;
}
[data-testid="stMetricLabel"] {
display: flex;
justify-content: center;
align-items: center;
}
[data-testid="stMetricDeltaIcon-Up"] {
position: relative;
left: 38%;
-webkit-transform: translateX(-50%);
-ms-transform: translateX(-50%);
transform: translateX(-50%);
}
[data-testid="stMetricDeltaIcon-Down"] {
position: relative;
left: 38%;
-webkit-transform: translateX(-50%);
-ms-transform: translateX(-50%);
transform: translateX(-50%);
}
</style>
""", unsafe_allow_html=True)
#######################
# Load data
df_reshaped = pd.read_csv('data/us-population-2010-2019-reshaped.csv')
#######################
# Sidebar
with st.sidebar:
st.title('🏂 US Population Dashboard')
year_list = list(df_reshaped.year.unique())[::-1]
selected_year = st.selectbox('Select a year', year_list)
df_selected_year = df_reshaped[df_reshaped.year == selected_year]
df_selected_year_sorted = df_selected_year.sort_values(by="population", ascending=False)
color_theme_list = ['blues', 'cividis', 'greens', 'inferno', 'magma', 'plasma', 'reds', 'rainbow', 'turbo', 'viridis']
selected_color_theme = st.selectbox('Select a color theme', color_theme_list)
#######################
# Plots
# Heatmap
def make_heatmap(input_df, input_y, input_x, input_color, input_color_theme):
heatmap = alt.Chart(input_df).mark_rect().encode(
y=alt.Y(f'{input_y}:O', axis=alt.Axis(title="Year", titleFontSize=18, titlePadding=15, titleFontWeight=900, labelAngle=0)),
x=alt.X(f'{input_x}:O', axis=alt.Axis(title="", titleFontSize=18, titlePadding=15, titleFontWeight=900)),
color=alt.Color(f'max({input_color}):Q',
legend=None,
scale=alt.Scale(scheme=input_color_theme)),
stroke=alt.value('black'),
strokeWidth=alt.value(0.25),
).properties(width=900
).configure_axis(
labelFontSize=12,
titleFontSize=12
)
# height=300
return heatmap
# Choropleth map
def make_choropleth(input_df, input_id, input_column, input_color_theme):
choropleth = px.choropleth(input_df, locations=input_id, color=input_column, locationmode="USA-states",
color_continuous_scale=input_color_theme,
range_color=(0, max(df_selected_year.population)),
scope="usa",
labels={'population':'Population'}
)
choropleth.update_layout(
template='plotly_dark',
plot_bgcolor='rgba(0, 0, 0, 0)',
paper_bgcolor='rgba(0, 0, 0, 0)',
margin=dict(l=0, r=0, t=0, b=0),
height=350
)
return choropleth
# Donut chart
def make_donut(input_response, input_text, input_color):
if input_color == 'blue':
chart_color = ['#29b5e8', '#155F7A']
if input_color == 'green':
chart_color = ['#27AE60', '#12783D']
if input_color == 'orange':
chart_color = ['#F39C12', '#875A12']
if input_color == 'red':
chart_color = ['#E74C3C', '#781F16']
source = pd.DataFrame({
"Topic": ['', input_text],
"% value": [100-input_response, input_response]
})
source_bg = pd.DataFrame({
"Topic": ['', input_text],
"% value": [100, 0]
})
plot = alt.Chart(source).mark_arc(innerRadius=45, cornerRadius=25).encode(
theta="% value",
color= alt.Color("Topic:N",
scale=alt.Scale(
#domain=['A', 'B'],
domain=[input_text, ''],
# range=['#29b5e8', '#155F7A']), # 31333F
range=chart_color),
legend=None),
).properties(width=130, height=130)
text = plot.mark_text(align='center', color="#29b5e8", font="Lato", fontSize=32, fontWeight=700, fontStyle="italic").encode(text=alt.value(f'{input_response} %'))
plot_bg = alt.Chart(source_bg).mark_arc(innerRadius=45, cornerRadius=20).encode(
theta="% value",
color= alt.Color("Topic:N",
scale=alt.Scale(
# domain=['A', 'B'],
domain=[input_text, ''],
range=chart_color), # 31333F
legend=None),
).properties(width=130, height=130)
return plot_bg + plot + text
# Convert population to text
def format_number(num):
if num > 1000000:
if not num % 1000000:
return f'{num // 1000000} M'
return f'{round(num / 1000000, 1)} M'
return f'{num // 1000} K'
# Calculation year-over-year population migrations
def calculate_population_difference(input_df, input_year):
selected_year_data = input_df[input_df['year'] == input_year].reset_index()
previous_year_data = input_df[input_df['year'] == input_year - 1].reset_index()
selected_year_data['population_difference'] = selected_year_data.population.sub(previous_year_data.population, fill_value=0)
return pd.concat([selected_year_data.states, selected_year_data.id, selected_year_data.population, selected_year_data.population_difference], axis=1).sort_values(by="population_difference", ascending=False)
#######################
# Dashboard Main Panel
col = st.columns((1.5, 4.5, 2), gap='medium')
with col[0]:
st.markdown('#### Gains/Losses')
df_population_difference_sorted = calculate_population_difference(df_reshaped, selected_year)
if selected_year > 2010:
first_state_name = df_population_difference_sorted.states.iloc[0]
first_state_population = format_number(df_population_difference_sorted.population.iloc[0])
first_state_delta = format_number(df_population_difference_sorted.population_difference.iloc[0])
else:
first_state_name = '-'
first_state_population = '-'
first_state_delta = ''
st.metric(label=first_state_name, value=first_state_population, delta=first_state_delta)
if selected_year > 2010:
last_state_name = df_population_difference_sorted.states.iloc[-1]
last_state_population = format_number(df_population_difference_sorted.population.iloc[-1])
last_state_delta = format_number(df_population_difference_sorted.population_difference.iloc[-1])
else:
last_state_name = '-'
last_state_population = '-'
last_state_delta = ''
st.metric(label=last_state_name, value=last_state_population, delta=last_state_delta)
st.markdown('#### States Migration')
if selected_year > 2010:
# Filter states with population difference > 50000
# df_greater_50000 = df_population_difference_sorted[df_population_difference_sorted.population_difference_absolute > 50000]
df_greater_50000 = df_population_difference_sorted[df_population_difference_sorted.population_difference > 50000]
df_less_50000 = df_population_difference_sorted[df_population_difference_sorted.population_difference < -50000]
# % of States with population difference > 50000
states_migration_greater = round((len(df_greater_50000)/df_population_difference_sorted.states.nunique())*100)
states_migration_less = round((len(df_less_50000)/df_population_difference_sorted.states.nunique())*100)
donut_chart_greater = make_donut(states_migration_greater, 'Inbound Migration', 'green')
donut_chart_less = make_donut(states_migration_less, 'Outbound Migration', 'red')
else:
states_migration_greater = 0
states_migration_less = 0
donut_chart_greater = make_donut(states_migration_greater, 'Inbound Migration', 'green')
donut_chart_less = make_donut(states_migration_less, 'Outbound Migration', 'red')
migrations_col = st.columns((0.2, 1, 0.2))
with migrations_col[1]:
st.write('Inbound')
st.altair_chart(donut_chart_greater)
st.write('Outbound')
st.altair_chart(donut_chart_less)
with col[1]:
st.markdown('#### Total Population')
choropleth = make_choropleth(df_selected_year, 'states_code', 'population', selected_color_theme)
st.plotly_chart(choropleth, use_container_width=True)
heatmap = make_heatmap(df_reshaped, 'year', 'states', 'population', selected_color_theme)
st.altair_chart(heatmap, use_container_width=True)
with col[2]:
st.markdown('#### Top States')
st.dataframe(df_selected_year_sorted,
column_order=("states", "population"),
hide_index=True,
width=None,
column_config={
"states": st.column_config.TextColumn(
"States",
),
"population": st.column_config.ProgressColumn(
"Population",
format="%f",
min_value=0,
max_value=max(df_selected_year_sorted.population),
)}
)
with st.expander('About', expanded=True):
st.write('''
- Data: [U.S. Census Bureau](https://www.census.gov/data/datasets/time-series/demo/popest/2010s-state-total.html).
- :orange[**Gains/Losses**]: states with high inbound/ outbound migration for selected year
- :orange[**States Migration**]: percentage of states with annual inbound/ outbound migration > 50,000
''')