-
Notifications
You must be signed in to change notification settings - Fork 364
/
Copy pathdiarize.py
261 lines (214 loc) · 6.84 KB
/
diarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import logging
import os
import re
import faster_whisper
import torch
import torchaudio
from ctc_forced_aligner import (
generate_emissions,
get_alignments,
get_spans,
load_alignment_model,
postprocess_results,
preprocess_text,
)
from deepmultilingualpunctuation import PunctuationModel
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
from helpers import (
cleanup,
create_config,
find_numeral_symbol_tokens,
get_realigned_ws_mapping_with_punctuation,
get_sentences_speaker_mapping,
get_speaker_aware_transcript,
get_words_speaker_mapping,
langs_to_iso,
process_language_arg,
punct_model_langs,
whisper_langs,
write_srt,
)
mtypes = {"cpu": "int8", "cuda": "float16"}
# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument(
"-a", "--audio", help="name of the target audio file", required=True
)
parser.add_argument(
"--no-stem",
action="store_false",
dest="stemming",
default=True,
help="Disables source separation."
"This helps with long files that don't contain a lot of music.",
)
parser.add_argument(
"--suppress_numerals",
action="store_true",
dest="suppress_numerals",
default=False,
help="Suppresses Numerical Digits."
"This helps the diarization accuracy but converts all digits into written text.",
)
parser.add_argument(
"--whisper-model",
dest="model_name",
default="medium.en",
help="name of the Whisper model to use",
)
parser.add_argument(
"--batch-size",
type=int,
dest="batch_size",
default=8,
help="Batch size for batched inference, reduce if you run out of memory, "
"set to 0 for original whisper longform inference",
)
parser.add_argument(
"--language",
type=str,
default=None,
choices=whisper_langs,
help="Language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
"--device",
dest="device",
default="cuda" if torch.cuda.is_available() else "cpu",
help="if you have a GPU use 'cuda', otherwise 'cpu'",
)
args = parser.parse_args()
language = process_language_arg(args.language, args.model_name)
if args.stemming:
# Isolate vocals from the rest of the audio
return_code = os.system(
f'python -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o temp_outputs --device "{args.device}"'
)
if return_code != 0:
logging.warning(
"Source splitting failed, using original audio file. "
"Use --no-stem argument to disable it."
)
vocal_target = args.audio
else:
vocal_target = os.path.join(
"temp_outputs",
"htdemucs",
os.path.splitext(os.path.basename(args.audio))[0],
"vocals.wav",
)
else:
vocal_target = args.audio
# Transcribe the audio file
whisper_model = faster_whisper.WhisperModel(
args.model_name, device=args.device, compute_type=mtypes[args.device]
)
whisper_pipeline = faster_whisper.BatchedInferencePipeline(whisper_model)
audio_waveform = faster_whisper.decode_audio(vocal_target)
suppress_tokens = (
find_numeral_symbol_tokens(whisper_model.hf_tokenizer)
if args.suppress_numerals
else [-1]
)
if args.batch_size > 0:
transcript_segments, info = whisper_pipeline.transcribe(
audio_waveform,
language,
suppress_tokens=suppress_tokens,
batch_size=args.batch_size,
)
else:
transcript_segments, info = whisper_model.transcribe(
audio_waveform,
language,
suppress_tokens=suppress_tokens,
vad_filter=True,
)
full_transcript = "".join(segment.text for segment in transcript_segments)
# clear gpu vram
del whisper_model, whisper_pipeline
torch.cuda.empty_cache()
# Forced Alignment
alignment_model, alignment_tokenizer = load_alignment_model(
args.device,
dtype=torch.float16 if args.device == "cuda" else torch.float32,
)
emissions, stride = generate_emissions(
alignment_model,
torch.from_numpy(audio_waveform)
.to(alignment_model.dtype)
.to(alignment_model.device),
batch_size=args.batch_size,
)
del alignment_model
torch.cuda.empty_cache()
tokens_starred, text_starred = preprocess_text(
full_transcript,
romanize=True,
language=langs_to_iso[info.language],
)
segments, scores, blank_token = get_alignments(
emissions,
tokens_starred,
alignment_tokenizer,
)
spans = get_spans(tokens_starred, segments, blank_token)
word_timestamps = postprocess_results(text_starred, spans, stride, scores)
# convert audio to mono for NeMo combatibility
ROOT = os.getcwd()
temp_path = os.path.join(ROOT, "temp_outputs")
os.makedirs(temp_path, exist_ok=True)
torchaudio.save(
os.path.join(temp_path, "mono_file.wav"),
torch.from_numpy(audio_waveform).unsqueeze(0).float(),
16000,
channels_first=True,
)
# Initialize NeMo MSDD diarization model
msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
msdd_model.diarize()
del msdd_model
torch.cuda.empty_cache()
# Reading timestamps <> Speaker Labels mapping
speaker_ts = []
with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
lines = f.readlines()
for line in lines:
line_list = line.split(" ")
s = int(float(line_list[5]) * 1000)
e = s + int(float(line_list[8]) * 1000)
speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])
wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
if info.language in punct_model_langs:
# restoring punctuation in the transcript to help realign the sentences
punct_model = PunctuationModel(model="kredor/punctuate-all")
words_list = list(map(lambda x: x["word"], wsm))
labled_words = punct_model.predict(words_list, chunk_size=230)
ending_puncts = ".?!"
model_puncts = ".,;:!?"
# We don't want to punctuate U.S.A. with a period. Right?
is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x)
for word_dict, labeled_tuple in zip(wsm, labled_words):
word = word_dict["word"]
if (
word
and labeled_tuple[1] in ending_puncts
and (word[-1] not in model_puncts or is_acronym(word))
):
word += labeled_tuple[1]
if word.endswith(".."):
word = word.rstrip(".")
word_dict["word"] = word
else:
logging.warning(
f"Punctuation restoration is not available for {info.language} language."
" Using the original punctuation."
)
wsm = get_realigned_ws_mapping_with_punctuation(wsm)
ssm = get_sentences_speaker_mapping(wsm, speaker_ts)
with open(f"{os.path.splitext(args.audio)[0]}.txt", "w", encoding="utf-8-sig") as f:
get_speaker_aware_transcript(ssm, f)
with open(f"{os.path.splitext(args.audio)[0]}.srt", "w", encoding="utf-8-sig") as srt:
write_srt(ssm, srt)
cleanup(temp_path)