-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune.py
102 lines (90 loc) · 3.61 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
<<<<<<< HEAD
import keras
import os
import numpy as np
from tqdm import tqdm
import argparse
from tools.data_utils import get_train_general
from tools.model_utils import load_model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", "-d", help="Dataset",
type=str, default="mnist")
parser.add_argument("--network", "-n", help="Network",
type=str, default="lenet5")
args = parser.parse_args()
dataset = args.dataset
network = args.network
# Load models and datasets
model = load_model(dataset, network)
x_train, y_train = get_train_general(dataset, network)
Y_train = np.argmax(y_train, axis=1)
y_predict = np.argmax(model.predict(x_train, verbose=0), axis=1)
origin_acc = model.evaluate(x_train, y_train, verbose=0)[1]
print(f"origin_acc : {origin_acc}")
x_true = []
x_false = []
for i, label in enumerate(y_predict):
if label == Y_train[i]:
x_true.append(i)
else:
x_false.append(i)
batch_size = 32
nb_epoch = 25
num_classes = 10
for iter in range(40):
save_dir = f'finetuned_models/{dataset}_{network}/iter_{iter}_models'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
y_predict[x_false] = np.random.randint(0, 10, size=len(x_false))
y_predict_categorical = keras.utils.to_categorical(y_predict, num_classes=num_classes)
checkpointer = keras.callbacks.ModelCheckpoint(os.path.join(save_dir, 'model_{epoch:03d}.h5'),
verbose=1, save_weights_only=False, period=1)
model.fit(x_train, y_predict_categorical, verbose=1,
batch_size=batch_size, nb_epoch=nb_epoch,
=======
import keras
import os
import numpy as np
from tqdm import tqdm
import argparse
from tools.data_utils import get_train_general
from tools.model_utils import load_model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", "-d", help="Dataset",
type=str, default="mnist")
parser.add_argument("--network", "-n", help="Network",
type=str, default="lenet5")
args = parser.parse_args()
dataset = args.dataset
network = args.network
# Load models and datasets
model = load_model(dataset, network)
x_train, y_train = get_train_general(dataset, network)
Y_train = np.argmax(y_train, axis=1)
y_predict = np.argmax(model.predict(x_train, verbose=0), axis=1)
origin_acc = model.evaluate(x_train, y_train, verbose=0)[1]
print(f"origin_acc : {origin_acc}")
x_true = []
x_false = []
for i, label in enumerate(y_predict):
if label == Y_train[i]:
x_true.append(i)
else:
x_false.append(i)
batch_size = 32
nb_epoch = 25
num_classes = 10
for iter in range(40):
save_dir = f'finetuned_models/{dataset}_{network}/iter_{iter}_models'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
y_predict[x_false] = np.random.randint(0, 10, size=len(x_false))
y_predict_categorical = keras.utils.to_categorical(y_predict, num_classes=num_classes)
checkpointer = keras.callbacks.ModelCheckpoint(os.path.join(save_dir, 'model_{epoch:03d}.h5'),
verbose=1, save_weights_only=False, period=1)
model.fit(x_train, y_predict_categorical, verbose=1,
batch_size=batch_size, nb_epoch=nb_epoch,
>>>>>>> 1dffd00419da92d924b616008c876798ac08764e
shuffle=True, callbacks=[checkpointer])