-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_network.py
298 lines (262 loc) · 15.2 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import matplotlib
matplotlib.use('Agg')
import lasagne
import theano.tensor as T
import numpy as np
import theano
import sys
import os
import cPickle
from network_architecture import build_net
from utils import printLosses
from batchgenerators.transforms import DataChannelSelectionTransform, SegChannelSelectionTransform, SpatialTransform, \
MirrorTransform, GammaTransform, ConvertSegToOnehotTransform, ContrastAugmentationTransform, BrightnessTransform, Compose
from batchgenerators.dataloading import MultiThreadedAugmenter
import time
from utils import soft_dice_per_img_in_batch, hard_dice_per_img_in_batch
from sklearn.cross_validation import KFold # this is deprecated -> bad, but need to keep it here for reproducibility
from dataset import load_dataset, BatchGenerator3D_random_sampling
from custom_transforms import BrainMaskAwareStretchZeroOneTransform, GenerateBrainMaskTransform
import paths
def create_data_gen_train(patient_data_train, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE, contrast_range=(0.75, 1.5),
gamma_range = (0.6, 2),
num_workers=5, num_cached_per_worker=3,
do_elastic_transform=False, alpha=(0., 1300.), sigma=(10., 13.),
do_rotation=False, a_x=(0., 2*np.pi), a_y=(0., 2*np.pi), a_z=(0., 2*np.pi),
do_scale=True, scale_range=(0.75, 1.25), seeds=None):
if seeds is None:
seeds = [None]*num_workers
elif seeds == 'range':
seeds = range(num_workers)
else:
assert len(seeds) == num_workers
data_gen_train = BatchGenerator3D_random_sampling(patient_data_train, BATCH_SIZE, num_batches=None, seed=False,
patch_size=(160, 192, 160), convert_labels=True)
tr_transforms = []
tr_transforms.append(DataChannelSelectionTransform([0, 1, 2, 3]))
tr_transforms.append(GenerateBrainMaskTransform())
tr_transforms.append(MirrorTransform())
tr_transforms.append(SpatialTransform(INPUT_PATCH_SIZE, list(np.array(INPUT_PATCH_SIZE)//2.),
do_elastic_deform=do_elastic_transform, alpha=alpha, sigma=sigma,
do_rotation=do_rotation, angle_x=a_x, angle_y=a_y, angle_z=a_z,
do_scale=do_scale, scale=scale_range, border_mode_data='nearest',
border_cval_data=0, order_data=3, border_mode_seg='constant', border_cval_seg=0,
order_seg=0, random_crop=True))
tr_transforms.append(BrainMaskAwareStretchZeroOneTransform((-5, 5), True))
tr_transforms.append(ContrastAugmentationTransform(contrast_range, True))
tr_transforms.append(GammaTransform(gamma_range, False))
tr_transforms.append(BrainMaskAwareStretchZeroOneTransform(per_channel=True))
tr_transforms.append(BrightnessTransform(0.0, 0.1, True))
tr_transforms.append(SegChannelSelectionTransform([0]))
tr_transforms.append(ConvertSegToOnehotTransform(range(num_classes), 0, "seg_onehot"))
gen_train = MultiThreadedAugmenter(data_gen_train, Compose(tr_transforms), num_workers, num_cached_per_worker,
seeds)
gen_train.restart()
return gen_train
def run(fold=0):
print fold
# =================================================================================================================
I_AM_FOLD = fold
np.random.seed(65432)
lasagne.random.set_rng(np.random.RandomState(98765))
sys.setrecursionlimit(2000)
BATCH_SIZE = 2
INPUT_PATCH_SIZE =(128, 128, 128)
num_classes=4
EXPERIMENT_NAME = "final"
results_dir = os.path.join(paths.results_folder)
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
results_dir = os.path.join(results_dir, EXPERIMENT_NAME)
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
results_dir = os.path.join(results_dir, "fold%d"%I_AM_FOLD)
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
n_epochs = 300
lr_decay = np.float32(0.985)
base_lr = np.float32(0.0005)
n_batches_per_epoch = 100
n_test_batches = 10
n_feedbacks_per_epoch = 10.
num_workers = 6
workers_seeds = [123, 1234, 12345, 123456, 1234567, 12345678]
# =================================================================================================================
all_data = load_dataset()
keys_sorted = np.sort(all_data.keys())
crossval_folds = KFold(len(all_data.keys()), n_folds=5, shuffle=True, random_state=123456)
ctr = 0
for train_idx, test_idx in crossval_folds:
print len(train_idx), len(test_idx)
if ctr == I_AM_FOLD:
train_keys = [keys_sorted[i] for i in train_idx]
test_keys = [keys_sorted[i] for i in test_idx]
break
ctr += 1
train_data = {i:all_data[i] for i in train_keys}
test_data = {i:all_data[i] for i in test_keys}
data_gen_train = create_data_gen_train(train_data, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE,
contrast_range=(0.75, 1.5), gamma_range = (0.8, 1.5),
num_workers=num_workers, num_cached_per_worker=2,
do_elastic_transform=True, alpha=(0., 1300.), sigma=(10., 13.),
do_rotation=True, a_x=(0., 2*np.pi), a_y=(0., 2*np.pi), a_z=(0., 2*np.pi),
do_scale=True, scale_range=(0.75, 1.25), seeds=workers_seeds)
data_gen_validation = BatchGenerator3D_random_sampling(test_data, BATCH_SIZE, num_batches=None, seed=False,
patch_size=INPUT_PATCH_SIZE, convert_labels=True)
val_transforms = []
val_transforms.append(GenerateBrainMaskTransform())
val_transforms.append(BrainMaskAwareStretchZeroOneTransform(clip_range=(-5, 5), per_channel=True))
val_transforms.append(SegChannelSelectionTransform([0]))
val_transforms.append(ConvertSegToOnehotTransform(range(4), 0, "seg_onehot"))
val_transforms.append(DataChannelSelectionTransform([0, 1, 2, 3]))
data_gen_validation = MultiThreadedAugmenter(data_gen_validation, Compose(val_transforms), 2, 2)
x_sym = T.tensor5()
seg_sym = T.matrix()
net, seg_layer = build_net(x_sym, INPUT_PATCH_SIZE, num_classes, 4, 16, batch_size=BATCH_SIZE,
do_instance_norm=True)
output_layer_for_loss = net
# add some weight decay
l2_loss = lasagne.regularization.regularize_network_params(output_layer_for_loss, lasagne.regularization.l2) * 1e-5
# the distinction between prediction_train and test is important only if we enable dropout (batch norm/inst norm
# does not use or save moving averages)
prediction_train = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=False,
batch_norm_update_averages=False, batch_norm_use_averages=False)
loss_vec = - soft_dice_per_img_in_batch(prediction_train, seg_sym, BATCH_SIZE)[:, 1:]
loss = loss_vec.mean()
loss += l2_loss
acc_train = T.mean(T.eq(T.argmax(prediction_train, axis=1), seg_sym.argmax(-1)), dtype=theano.config.floatX)
prediction_test = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=True,
batch_norm_update_averages=False, batch_norm_use_averages=False)
loss_val = - soft_dice_per_img_in_batch(prediction_test, seg_sym, BATCH_SIZE)[:, 1:]
loss_val = loss_val.mean()
loss_val += l2_loss
acc = T.mean(T.eq(T.argmax(prediction_test, axis=1), seg_sym.argmax(-1)), dtype=theano.config.floatX)
# learning rate has to be a shared variable because we decrease it with every epoch
params = lasagne.layers.get_all_params(output_layer_for_loss, trainable=True)
learning_rate = theano.shared(base_lr)
updates = lasagne.updates.adam(T.grad(loss, params), params, learning_rate=learning_rate, beta1=0.9, beta2=0.999)
dc = hard_dice_per_img_in_batch(prediction_test, seg_sym.argmax(1), num_classes, BATCH_SIZE).mean(0)
train_fn = theano.function([x_sym, seg_sym], [loss, acc_train, loss_vec], updates=updates)
val_fn = theano.function([x_sym, seg_sym], [loss_val, acc, dc])
all_val_dice_scores=None
all_training_losses = []
all_validation_losses = []
all_validation_accuracies = []
all_training_accuracies = []
val_dice_scores = []
epoch = 0
while epoch < n_epochs:
if epoch == 100:
data_gen_train = create_data_gen_train(train_data, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE,
contrast_range=(0.85, 1.25), gamma_range = (0.8, 1.5),
num_workers=6, num_cached_per_worker=2,
do_elastic_transform=True, alpha=(0., 1000.), sigma=(10., 13.),
do_rotation=True, a_x=(0., 2*np.pi), a_y=(-np.pi/8., np.pi/8.),
a_z=(-np.pi/8., np.pi/8.), do_scale=True, scale_range=(0.85, 1.15),
seeds=workers_seeds)
if epoch == 175:
data_gen_train = create_data_gen_train(train_data, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE,
contrast_range=(0.9, 1.1), gamma_range = (0.85, 1.3),
num_workers=6, num_cached_per_worker=2,
do_elastic_transform=True, alpha=(0., 750.), sigma=(10., 13.),
do_rotation=True, a_x=(0., 2*np.pi), a_y=(-0.00001, 0.00001),
a_z=(-0.00001, 0.00001), do_scale=True, scale_range=(0.85, 1.15),
seeds=workers_seeds)
epoch_start_time = time.time()
learning_rate.set_value(np.float32(base_lr* lr_decay**(epoch)))
print "epoch: ", epoch, " learning rate: ", learning_rate.get_value()
train_loss = 0
train_acc_tmp = 0
train_loss_tmp = 0
batch_ctr = 0
for data_dict in data_gen_train:
data = data_dict["data"].astype(np.float32)
seg = data_dict["seg_onehot"].astype(np.float32).transpose(0, 2, 3, 4, 1).reshape((-1, num_classes))
if batch_ctr != 0 and batch_ctr % int(np.floor(n_batches_per_epoch/n_feedbacks_per_epoch)) == 0:
print "number of batches: ", batch_ctr, "/", n_batches_per_epoch
print "training_loss since last update: ", \
train_loss_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch), " train accuracy: ", \
train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch)
all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
all_training_accuracies.append(train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
train_loss_tmp = 0
train_acc_tmp = 0
if len(val_dice_scores) > 0:
all_val_dice_scores = np.concatenate(val_dice_scores, axis=0).reshape((-1, num_classes))
try:
printLosses(all_training_losses, all_training_accuracies, all_validation_losses,
all_validation_accuracies, os.path.join(results_dir, "%s.png" % EXPERIMENT_NAME),
n_feedbacks_per_epoch, val_dice_scores=all_val_dice_scores,
val_dice_scores_labels=["brain", "1", "2", "3", "4", "5"])
except:
pass
loss_vec, acc, l = train_fn(data, seg)
loss = loss_vec.mean()
train_loss += loss
train_loss_tmp += loss
train_acc_tmp += acc
batch_ctr += 1
if batch_ctr >= n_batches_per_epoch:
break
all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
all_training_accuracies.append(train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
train_loss /= n_batches_per_epoch
print "training loss average on epoch: ", train_loss
val_loss = 0
accuracies = []
valid_batch_ctr = 0
all_dice = []
for data_dict in data_gen_validation:
data = data_dict["data"].astype(np.float32)
seg = data_dict["seg_onehot"].astype(np.float32).transpose(0, 2, 3, 4, 1).reshape((-1, num_classes))
w = np.zeros(num_classes, dtype=np.float32)
w[np.unique(seg.argmax(-1))] = 1
loss, acc, dice = val_fn(data, seg)
dice[w==0] = 2
all_dice.append(dice)
val_loss += loss
accuracies.append(acc)
valid_batch_ctr += 1
if valid_batch_ctr >= n_test_batches:
break
all_dice = np.vstack(all_dice)
dice_means = np.zeros(num_classes)
for i in range(num_classes):
dice_means[i] = all_dice[all_dice[:, i]!=2, i].mean()
val_loss /= n_test_batches
print "val loss: ", val_loss
print "val acc: ", np.mean(accuracies), "\n"
print "val dice: ", dice_means
print "This epoch took %f sec" % (time.time()-epoch_start_time)
val_dice_scores.append(dice_means)
all_validation_losses.append(val_loss)
all_validation_accuracies.append(np.mean(accuracies))
all_val_dice_scores = np.concatenate(val_dice_scores, axis=0).reshape((-1, num_classes))
try:
printLosses(all_training_losses, all_training_accuracies, all_validation_losses, all_validation_accuracies,
os.path.join(results_dir, "%s.png" % EXPERIMENT_NAME), n_feedbacks_per_epoch,
val_dice_scores=all_val_dice_scores, val_dice_scores_labels=["brain", "1", "2", "3", "4", "5"])
except:
pass
with open(os.path.join(results_dir, "%s_Params.pkl" % (EXPERIMENT_NAME)), 'w') as f:
cPickle.dump(lasagne.layers.get_all_param_values(output_layer_for_loss), f)
with open(os.path.join(results_dir, "%s_allLossesNAccur.pkl"% (EXPERIMENT_NAME)), 'w') as f:
cPickle.dump([all_training_losses, all_training_accuracies, all_validation_losses,
all_validation_accuracies, val_dice_scores], f)
epoch += 1
if __name__ == "__main__":
fold = int(sys.argv[1])
run(fold)