-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalignment.py
449 lines (384 loc) · 16.1 KB
/
alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
__author__ = 'Michael'
import copy
import dendropy
import numpy as np
# from my_globals import *
nt_alphabet=['A','C','G','T','U','M','N','Y','K','W','R']
foo = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
nt_alphabet = nt_alphabet + list(set(foo).difference(set(nt_alphabet)))
def remove_all_blank_columns(fasta_dict,same_length_check=True):
"""
Takes a dictionary representing a fasta file and removes any columns that are blank for all taxa. Data are
assumed to be aligned starting with the first column in each string.
NOTE: the operations in this function are in-place on the object provided by pythons nature, so while it
returns a dictionary, catching the return value is not strictly necessary and the input will be
modified after the fact.
:param fasta_dict (dict): fasta dictionary (keys=taxon names, values=alignment strings)
:param same_length_check (boolean) : OPTIONAL (default=True) If True, will throw an error if all sequences
in fasta_dict are not the same length.
:return: fasta_dict: dictionary with columns removed.
"""
num_seqs=len(fasta_dict.values())
seq_len = len(fasta_dict.values()[0])
# print("#columns: %s" % seq_len)
new_dict={}
for i in fasta_dict.keys():
new_dict[i]=''
# check that all the sequences are the same length
if same_length_check==True:
for i in fasta_dict.values():
if len(i) != seq_len:
# print('The sequences were not all the same length.')
return -1
# identify columns that are blank for every taxon
all_blanks_list = []
# print("# blanks: %s" % len(all_blanks_list))
for i in range(seq_len):
allblank=True
for j in fasta_dict.values():
if j[i]!='-':
allblank=False
break
if allblank==True:
all_blanks_list.append(i)
non_blanks=list(set(range(seq_len)).difference(set(all_blanks_list)))
non_blanks.sort()
# print("# non-blanks: %s" % len(non_blanks))
# remove those columns (in place, so do it in reverse order)
# if len(all_blanks_list)>0:
# all_blanks_list.sort(reverse=True)
# print(len(all_blanks_list))
#
# for i in all_blanks_list:
# for k in fasta_dict.keys():
# j=fasta_dict[k]
# fasta_dict[k]=j[0:i-1] + j[i:]
# # for j in fasta_dict.values():
# # j = j[0:i-1] + j[i:]
for i in non_blanks:
for j in fasta_dict.keys():
new_dict[j]=new_dict[j]+fasta_dict[j][i]
lents=[]
for i in new_dict.values():
lents.append(len(i))
print(lents)
return new_dict
def nucleotide_to_int(nt):
# 0 is the blank character
if nt not in nt_alphabet:
return 99
return nt_alphabet.index(nt)+1
def int_to_nucleotide(nt):
# 0 is the blank character
if nt>5:
return '?'
return nt_alphabet[nt-1]
def read_from_fasta(file_path):
"""
Reads from a fasta file and returns a dictionary where keys are taxon names and values are strings
representing the sequence.
:param file_path (string): The full system-readable path to the fasta file
:return: fasta (dict)
"""
output={}
fasta=open(file_path,'r')
first=True
for l in fasta:
if l[0]=='>':
if first!=True:
output[name]=seq
else:
first=False
name=l[1:].strip()
seq=''
else:
seq=seq + l.strip()
output[name]=seq
fasta.close()
return output
def check_is_leaf(a):
return a.is_leaf()
class MultipleSequenceAlignment():
def __init__(self,refpath=None,estpath=None, treepath=None, compare_with_est=False,
generic_coords=False, data_type=None):
self.refpath=refpath
self.estpath=estpath
self.treepath=treepath
self.data_type = data_type
self.ref=None
self.est=None
self.node_order=[]
self.generic_coords=generic_coords
if self.treepath!=None:
print('setting treepath to %s' % treepath)
self.set_treepath(self.treepath)
if self.refpath!=None:
print('setting reference alignment to %s' % self.refpath)
self.set_refpath()
print("Reference Alignment Length:\t%s" % self.reflen)
if compare_with_est==True:
self.finalize_ref_alignment()
if self.estpath==None:
self.estpath=test_aln_est
self.set_estpath()
tp,fn= self.count_tp_fn()
print("Reference Homologs:\t%s" % tp)
print("Estimated Homologs:\t%s" % self.est_homologs)
print("Shared Homologs:\t%s" % self.shared_homologs)
self.write_column_wise_errors()
def set_treepath(self,tp):
self.treepath=tp
self.get_node_order()
def get_node_order(self):
print("Reading reference tree and getting node order...")
self.tree=dendropy.Tree.get(path=self.treepath,schema="newick",preserve_underscores=True)
self.numtaxa = len(self.tree.leaf_nodes())
print("the tree has %s taxa" % self.numtaxa)
if len(self.node_order)>0:
self.old_node_order=copy.deepcopy(self.node_order)
self.node_order=[]
self.node_order_lookup={}
self.get_cladogram_segments()
# ct=0
# for i in self.tree.postorder_node_iter(filter_fn=check_is_leaf):
# self.node_order.append(i.taxon.label)
# self.node_order_lookup[i.taxon.label]=ct
# ct+=1
def set_refpath(self,rp=None):
if rp!=None:
self.refpath=rp
print("Reading reference alignment...")
self.ref_temp=read_from_fasta(self.refpath)
self.ref=remove_all_blank_columns(self.ref_temp)
self.reflen=len(self.ref[self.ref.keys()[0]])
self.msa_cols=[]
for i in range(self.reflen):
x=MSAColumn(i,self)
self.msa_cols.append(x)
# lookup position in alignment based on position in sequence
self.ref_seq_colindices={}
txct=0
print("Updating reference alignment columns...")
for i in self.ref.keys():
if txct % 10 ==0:
print("\trow: %s" % txct)
txct+=1
seq=self.ref[i]
slen=len(seq.replace('-',''))
self.ref_seq_colindices[i]=np.zeros(slen,dtype=np.uint32)
position=0
for j in range(self.reflen):
if seq[j]!='-':
self.ref_seq_colindices[i][position]=j
self.msa_cols[j].add_char(i,seq[j],position)
position+=1
def finalize_ref_alignment(self):
print("Finalizing reference alignment...")
for i in range(self.reflen):
if i % 250==0:
print(i)
self.msa_cols[i].populate_tp_matrix()
def set_estpath(self):
print("Reading Estimated Alignment...")
self.est = read_from_fasta(self.estpath)
self.est_seq_colindices={}
for i in self.est.keys():
position=0
self.est_seq_colindices[i]=[]
myseq=self.est[i]
for j in range(len(self.est.values()[0])):
if myseq[j]!='-':
self.est_seq_colindices[i].append(j)
position+=1
self.est_homologs=0
self.shared_homologs=0
self.numtaxa=len(self.est.keys())
print("Calculating homologs and updating reference alignment...")
for i in range(self.numtaxa):
if i % 10 ==0:
print("\trow: %s" % i)
i_colinds=self.est_seq_colindices[self.est.keys()[i]]
i_label=self.est.keys()[i]
for j in range(i+1,self.numtaxa):
j_colinds=self.est_seq_colindices[self.est.keys()[j]]
j_label=self.est.keys()[j]
common=set(i_colinds).intersection(set(j_colinds))
for hom in common:
i_pos=i_colinds.index(hom)
j_pos=j_colinds.index(hom)
ref_pos_i=self.ref_seq_colindices[i_label][i_pos]
ref_pos_j=self.ref_seq_colindices[j_label][j_pos]
if ref_pos_i==ref_pos_j:
self.msa_cols[ref_pos_i].update_false_negative(i_label,j_label)
self.shared_homologs+=1
self.est_homologs+=1
# self.est_homologs.append((i_label,i_pos,j_label,j_pos))
def write_column_wise_errors(self):
outf=open(tree_ref_aln_fnfp_totxt,'w')
for i in range(self.reflen):
tp, fn=self.msa_cols[i].tp_fn_count()
outf.write('%s,%s,%s\n' % (i,tp,fn))
outf.close()
def get_cladogram_segments(self, bottom_or_left=1260, top_or_right=1560, firstnode=53, spacing=6, horizontal=True, leafs_on_left_or_bottom=True, generic_coords=False):
res = 100000
if self.generic_coords==True:
bottom_or_left=0
top_or_right=res #default resolution
spacing= float(top_or_right)/len(self.tree.leaf_nodes())
firstnode=spacing/2
# for grid graphic: bottom=700, top=1000, firstnode=53, spacing=6
t=copy.deepcopy(self.tree)
self.tree_vertices={}
for i in t.postorder_edge_iter():
if i.length is not None:
i.length=1.0
# print("rerooting at midpoint...")
# t.reroot_at_midpoint()
height=t.max_distance_from_root()
incr = int(abs(top_or_right - bottom_or_left) / height)
# incr = int((top-bottom)/height)
ct = 0
# ct_all=0
self.node_added_order=[]
for i in t.postorder_node_iter():
# self.node_added_order.append(i)
args={}
if check_is_leaf(i)==True:
# if i.taxon.label == 'Zangia_citrina_HKAS52684':
# print('at taxon Zangia_citrina_HKAS52684: order %s' % ct)
self.node_order.append(i.taxon.label)
self.node_order_lookup[i.taxon.label]=ct
order=ct
ct+=1
# order = self.node_order_lookup[i.taxon.label]
self.tree_vertices[i]=(bottom_or_left, firstnode + spacing * order)
args={'nd':i,'vert':(bottom_or_left, firstnode + spacing * order), 'cvs':None}
self.node_added_order.append(args)
else:
maxht=0
sum_horz=0.0
ct_child=0
cvs=[]
for j in i.child_nodes():
cvs.append(self.tree_vertices[j])
# if len(self.node_added_order)<20:
# print("ch: %s, %s" % self.tree_vertices[j])
for k in cvs:
if k[0]> maxht:
maxht=k[0]
sum_horz+=k[1]
ct_child+=1
newht=maxht + incr
newcent=int(float(sum_horz)/ct_child)
self.tree_vertices[i]=(newht,newcent)
args={'nd':i,'vert':(newht,newcent),'cvs':copy.deepcopy(cvs)}
self.node_added_order.append(args)
# from utilities import write_list_to_file
# write_list_to_file(self.node_order_lookup.keys(),'C:\\Users\\miken\\Dropbox\\Grad School\\Phylogenetics\\work\\mushrooms\\keylist.txt')
self.segment_endpoints=[]
for i in t.postorder_edge_iter():
if i.length is not None and i.length>0.0:
v1=self.tree_vertices[i.head_node]
try:
v2=self.tree_vertices[i.head_node.parent_node]
except:
print(i.length)
self.segment_endpoints.append((v1[0],v1[1],v2[0],v1[1]))
self.segment_endpoints.append((v2[0],v1[1],v2[0],v2[1]))
if self.generic_coords==True:
temp_se = copy.deepcopy(self.segment_endpoints)
del self.segment_endpoints
self.segment_endpoints=[]
for i in temp_se:
fres = float(res)
self.segment_endpoints.append((float(i[0])/fres, float(i[1])/fres, float(i[2])/fres, float(i[3])/fres))
self.t_copy=t
# def update_false_negatives(self):
# for hom in self.est_homologs:
# if self.ref_seq_colindices[hom[0]][hom[1]]==self.ref_seq_colindices[hom[2]][hom[3]]:
# self.msa_cols[self.ref_seq_colindices[hom[0]][hom[1]]].update_false_negative(hom[0],hom[2])
def count_tp_fn(self):
tp=0
fn=0
for i in self.msa_cols:
a,b=i.tp_fn_count()
tp += a
fn += b
return (tp,fn)
class LightMutlipleSequenceAlignment(MultipleSequenceAlignment):
def __init__(self, refpath=None,treepath=None,generic_coords=False,data_type=None):
self.refpath=refpath
self.treepath=treepath
self.gappy_threshold = 0.0
self.ref=None
self.data_type = data_type
self.node_order=[]
self.generic_coords=generic_coords
if self.treepath!=None:
print('setting treepath to %s' % treepath)
self.set_treepath(self.treepath)
if self.refpath!=None:
print('setting reference alignment to %s' % self.refpath)
self.set_refpath()
def set_refpath(self,rp=None):
if rp!=None:
self.refpath=rp
print("Reading reference alignment...")
# self.ref_temp=read_from_fasta(self.refpath)
self.ref = read_from_fasta(self.refpath)
print("removing all-blank columns...")
# self.ref=remove_all_blank_columns(self.ref_temp)
self.reflen=len(self.ref[list(self.ref.keys())[0]])
self.numtaxa = len(self.ref.keys())
print("done setting reference alignment...")
self.ref_np = np.zeros((self.numtaxa,self.reflen),dtype=np.uint8)
self.populate_alignment_np()
def populate_alignment_np(self):
if len(self.node_order_lookup.keys())>0:
for i in self.ref.keys():
no = self.node_order_lookup[i]
seq = self.ref[i]
for j in range(self.reflen):
if seq[j]!='-':
self.ref_np[no,j] = nt_alphabet.index(seq[j])+1
self.set_active_cols()
def set_active_cols(self,gappy_thresh=None):
if gappy_thresh is not None:
self.gappy_threshold = gappy_thresh
refnpgt0 = (self.ref_np>0)*1
print("gappy threshold is %s" % self.gappy_threshold)
# print(np.sum(refnpgt0,0)[0:100])
self.active_cols = np.where(np.sum(refnpgt0,0).astype(np.float64)/self.ref_np.shape[0]>=self.gappy_threshold)[0]
print("number of active columns is %s" % self.active_cols.shape)
class MSAColumn():
def __init__(self,index,parent):
self.index=index
self.node_order_lookup=parent.node_order_lookup
self.fn_mat=np.zeros((len(self.node_order_lookup),len(self.node_order_lookup)),dtype=np.uint8)
self.tp_mat=np.zeros((len(self.node_order_lookup),len(self.node_order_lookup)),dtype=np.uint8)
self.chars={}
def tp_fn_count(self):
a=len(self.chars)
return ((a*(a-1) >> 1),np.sum(self.fn_mat)/2)
def add_char(self,label,site_char,seq_position):
self.chars[self.node_order_lookup[label]]=(nucleotide_to_int(site_char),seq_position,site_char.upper())
def populate_tp_matrix(self):
numtaxa=len(self.chars.keys())
for i in range(numtaxa):
# ind_i=self.node_order_lookup[self.chars.keys()[i]]
ind_i=self.chars.keys()[i]
for j in range(i+1,numtaxa):
ind_j=self.chars.keys()[j]
self.tp_mat[ind_i,ind_j]=1
self.tp_mat[ind_j,ind_i]=1
self.fn_mat[ind_i,ind_j]=1
self.fn_mat[ind_j,ind_i]=1
def update_false_negative(self,i_label,j_label):
i_row=self.node_order_lookup[i_label]
j_row=self.node_order_lookup[j_label]
self.fn_mat[i_row,j_row]=0
self.fn_mat[j_row,i_row]=0
if __name__=='__main__':
from gui_manager import AlignmentApp
app=AlignmentApp()
app.MainLoop()