-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathviz_bbox_predictions.py
244 lines (191 loc) · 7.87 KB
/
viz_bbox_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import utils
import logging
import argparse
import importlib
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from PIL import Image
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint
from mmdet.apis import set_random_seed
from mmdet3d.datasets import build_dataset, build_dataloader
from mmdet3d.models import build_model
from nuscenes.utils.data_classes import Box
from pyquaternion import Quaternion
from nuscenes.nuscenes import NuScenes
from nuscenes.utils.geometry_utils import box_in_image
from configs.r50_nuimg_704x256 import class_names
from models.utils import VERSION
classname_to_color = { # RGB
'car': (255, 158, 0), # Orange
'pedestrian': (0, 0, 230), # Blue
'trailer': (255, 140, 0), # Darkorange
'truck': (255, 99, 71), # Tomato
'bus': (255, 127, 80), # Coral
'motorcycle': (255, 61, 99), # Red
'construction_vehicle': (233, 150, 70), # Darksalmon
'bicycle': (220, 20, 60), # Crimson
'barrier': (112, 128, 144), # Slategrey
'traffic_cone': (47, 79, 79), # Darkslategrey
}
def convert_to_nusc_box(bboxes, scores=None, labels=None, names=None, score_threshold=0.3, lift_center=False):
results = []
for q in range(bboxes.shape[0]):
if scores is not None:
score = scores[q]
else:
score = 1.0
if score < score_threshold:
continue
if labels is not None:
label = labels[q]
else:
label = 0
if names is not None:
name = names[q]
else:
name = class_names[label]
if name not in class_names:
name = class_names[-1]
bbox = bboxes[q].copy()
if lift_center:
bbox[2] += bbox[5] * 0.5
orientation = Quaternion(axis=[0, 0, 1], radians=bbox[6])
box = Box(
center=[bbox[0], bbox[1], bbox[2]],
size=[bbox[4], bbox[3], bbox[5]],
orientation=orientation,
score=score,
label=label,
velocity=(bbox[7], bbox[8], 0),
name=name
)
results.append(box)
return results
def viz_bbox(nusc, bboxes, data_info, fig, gs):
cam_types = [
'CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT',
'CAM_BACK_RIGHT', 'CAM_BACK', 'CAM_BACK_LEFT',
]
for cam_id, cam_type in enumerate(cam_types):
sample_data_token = nusc.get('sample', data_info['token'])['data'][cam_type]
sd_record = nusc.get('sample_data', sample_data_token)
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
intrinsic = np.array(cs_record['camera_intrinsic'])
img_path = nusc.get_sample_data_path(sample_data_token)
img_size = (sd_record['width'], sd_record['height'])
ax = fig.add_subplot(gs[cam_id // 3, cam_id % 3])
ax.imshow(Image.open(img_path))
for bbox in bboxes:
bbox = bbox.copy()
# Move box to ego vehicle coord system
bbox.rotate(Quaternion(data_info['lidar2ego_rotation']))
bbox.translate(np.array(data_info['lidar2ego_translation']))
# Move box to sensor coord system
bbox.translate(-np.array(cs_record['translation']))
bbox.rotate(Quaternion(cs_record['rotation']).inverse)
if box_in_image(bbox, intrinsic, img_size):
c = np.array(classname_to_color[bbox.name]) / 255.0
bbox.render(ax, view=intrinsic, normalize=True, colors=(c, c, c), linewidth=1)
ax.axis('off')
ax.set_title(cam_type)
ax.set_xlim(0, img_size[0])
ax.set_ylim(img_size[1], 0)
sample = nusc.get('sample', data_info['token'])
lidar_data_token = sample['data']['LIDAR_TOP']
ax = fig.add_subplot(gs[0:2, 3])
nusc.explorer.render_sample_data(lidar_data_token, with_anns=False, ax=ax, verbose=False)
ax.axis('off')
ax.set_title('LIDAR_TOP')
ax.set_xlim(-40, 40)
ax.set_ylim(-40, 40)
sd_record = nusc.get('sample_data', lidar_data_token)
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
for bbox in bboxes:
bbox = bbox.copy()
bbox.rotate(Quaternion(cs_record['rotation']))
bbox.translate(np.array(cs_record['translation']))
bbox.rotate(Quaternion(pose_record['rotation']))
yaw = Quaternion(pose_record['rotation']).yaw_pitch_roll[0]
bbox.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse)
c = np.array(classname_to_color[bbox.name]) / 255.0
bbox.render(ax, view=np.eye(4), colors=(c, c, c))
def main():
parser = argparse.ArgumentParser(description='Validate a detector')
parser.add_argument('--config', required=True)
parser.add_argument('--weights', required=True)
parser.add_argument('--override', nargs='+', action=DictAction)
parser.add_argument('--score_threshold', default=0.3)
args = parser.parse_args()
# parse configs
cfgs = Config.fromfile(args.config)
if args.override is not None:
cfgs.merge_from_dict(args.override)
# use val-mini for visualization
cfgs.data.val.ann_file = cfgs.data.val.ann_file.replace('val', 'val_mini')
# register custom module
importlib.import_module('models')
importlib.import_module('loaders')
# MMCV, please shut up
from mmcv.utils.logging import logger_initialized
logger_initialized['root'] = logging.Logger(__name__, logging.WARNING)
logger_initialized['mmcv'] = logging.Logger(__name__, logging.WARNING)
# you need one GPU
assert torch.cuda.is_available()
assert torch.cuda.device_count() == 1
utils.init_logging(None, cfgs.debug)
logging.info('Using GPU: %s' % torch.cuda.get_device_name(0))
logging.info('Setting random seed: 0')
set_random_seed(0, deterministic=True)
logging.info('Loading validation set from %s' % cfgs.data.val.data_root)
val_dataset = build_dataset(cfgs.data.val)
val_loader = build_dataloader(
val_dataset,
samples_per_gpu=1,
workers_per_gpu=cfgs.data.workers_per_gpu,
num_gpus=1,
dist=False,
shuffle=False,
seed=0,
)
logging.info('Creating model: %s' % cfgs.model.type)
model = build_model(cfgs.model)
model.cuda()
model = MMDataParallel(model, [0])
logging.info('Loading checkpoint from %s' % args.weights)
checkpoint = load_checkpoint(
model, args.weights, map_location='cuda', strict=True,
logger=logging.Logger(__name__, logging.ERROR)
)
if 'version' in checkpoint:
VERSION.name = checkpoint['version']
logging.info('Initialize nuscenes toolkit...')
if 'mini' in cfgs.data.val.ann_file:
nusc = NuScenes(version='v1.0-mini', dataroot=cfgs.data.val.data_root, verbose=False)
else:
nusc = NuScenes(version='v1.0-trainval', dataroot=cfgs.data.val.data_root, verbose=False)
for i, data in enumerate(val_loader):
model.eval()
with torch.no_grad():
results = model(return_loss=False, rescale=True, **data)
results = results[0]['pts_bbox']
bboxes_pred = convert_to_nusc_box(
bboxes=results['boxes_3d'].tensor.numpy(),
scores=results['scores_3d'].numpy(),
labels=results['labels_3d'].numpy(),
score_threshold=args.score_threshold,
lift_center=True,
)
fig = plt.figure(figsize=(15.5, 5))
gs = GridSpec(2, 4, figure=fig)
viz_bbox(nusc, bboxes_pred, val_dataset.data_infos[i], fig, gs)
plt.tight_layout()
plt.savefig('outputs/bbox_%04d.jpg' % i, dpi=200)
plt.close()
logging.info('Visualized result is dumped to outputs/bbox_%04d.jpg' % i)
if __name__ == '__main__':
main()