-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_x4k.py
141 lines (126 loc) · 5.75 KB
/
train_x4k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import argparse
import random
import torch
import torch.distributed as dist
import torch.nn.functional as F
import numpy as np
import math
import json
import time
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data.distributed import DistributedSampler
from dataset import VimeoDataset
from X4K_dataset import get_train_data, get_test_data
from config import *
from Trainer_x4k import Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
epochs = 100
def get_learning_rate(step):
warmup = 1000
if step < warmup:
mul = step / warmup
return 2e-4 * mul
else:
mul = np.cos((step - warmup) / (epochs * args.step_per_epoch - warmup) * math.pi) * 0.5 + 0.5
return (2e-4 - 2e-5) * mul + 2e-5
def random_rescale(img0, img1, gt):
rand = random.uniform(0, 1)
if rand < 0.5:
scale_factor = 1
elif 0.5 <= rand < 0.75:
scale_factor = 0.5
else:
scale_factor = 0.25
img0 = F.interpolate(img0, scale_factor=scale_factor, mode='bilinear', align_corners=False)
img1 = F.interpolate(img1, scale_factor=scale_factor, mode='bilinear', align_corners=False)
gt = F.interpolate(gt, scale_factor=scale_factor, mode='bilinear', align_corners=False)
return img0, img1, gt
def train(model, local_rank):
if local_rank == 0:
writer = SummaryWriter(f'log/{MODEL_CONFIG["LOGNAME"]}/train/vis')
train_data, sampler = get_train_data(args, 32, local_rank)
args.step_per_epoch = train_data.__len__()
val_data = get_test_data(args, 2, True)
print('training...')
start_epoch, nr_eval, step = 0, 0, 0
time_stamp = time.time()
cur_psnr = evaluate(model, val_data, nr_eval, local_rank)
if local_rank <= 0:
print(f'initial psnr: {cur_psnr}')
for epoch in range(start_epoch, epochs):
sampler.set_epoch(epoch) if local_rank > 0 else None
for i, (imgs, timestep) in enumerate(train_data):
data_time_interval = time.time() - time_stamp
time_stamp = time.time()
imgs = imgs.to(device, non_blocking=True) / 255.
timestep = timestep.view(-1, 1, 1, 1)
timestep = timestep.to(device, non_blocking=True)
img0, img1, gt = imgs[:, :, 0], imgs[:, :, 1], imgs[:, :, 2]
img0, img1, gt = random_rescale(img0, img1, gt)
imgs = torch.cat((img0, img1), 1)
learning_rate = get_learning_rate(step)
_, loss = model.update(imgs, gt, learning_rate, timestep, training=True)
train_time_interval = time.time() - time_stamp
time_stamp = time.time()
if step % 200 == 1 and local_rank == 0:
writer.add_scalar('learning_rate', learning_rate, step)
writer.add_scalar('loss', loss, step)
if local_rank <= 0:
print('epoch:{} {}/{} time:{:.2f}+{:.2f} loss:{:.4e}'.format(epoch, i, args.step_per_epoch, data_time_interval, train_time_interval, loss))
step += 1
nr_eval += 1
if nr_eval % 2 == 0:
cur_psnr = evaluate(model, val_data, nr_eval, local_rank)
model.save_model(local_rank, epoch)
dist.barrier()
def evaluate(model, val_data, nr_eval, local_rank):
if local_rank == 0:
writer_val = SummaryWriter(f'log/{MODEL_CONFIG["LOGNAME"]}/val/vis')
psnr = []
for _, (imgs, timestep, _, _) in enumerate(val_data):
imgs = imgs.to(device, non_blocking=True) / 255.
timestep = timestep.to(device, non_blocking=True)
timestep = timestep.view(-1, 1, 1, 1)
img0, img1, gt = imgs[:, :, 0], imgs[:, :, 1], imgs[:, :, 2]
imgs = torch.cat((img0, img1), 1)
with torch.no_grad():
pred, _ = model.update(imgs, gt, timestep=timestep, training=False)
for j in range(gt.shape[0]):
psnr.append(-10 * math.log10(((gt[j] - pred[j]) * (gt[j] - pred[j])).mean().cpu().item()))
psnr = np.array(psnr).mean()
if local_rank == 0:
print(str(nr_eval), psnr)
writer_val.add_scalar('psnr', psnr, nr_eval)
log_stats = {"epoch": nr_eval, "psnr": psnr}
with open(f"./log/{MODEL_CONFIG['LOGNAME']}/log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
return psnr
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=8, type=int, help='batch size')
parser.add_argument('--num_thrds', default=8, type=int, help='dataloader num threads')
parser.add_argument('--img_ch', default=3, type=int, help='image channels')
parser.add_argument("--need_patch", action="store_true", default=False, help="if need patch")
parser.add_argument('--patch_size', default=512, type=int, help='if need patch, patch size')
parser.add_argument('--train_data_path', type=str, help='data path of X4K')
parser.add_argument('--val_data_path', type=str, help='data path of X4K')
parser.add_argument("--wandb_log", action="store_true", default=False, help="use wandb to log")
parser.add_argument("--ckpt_name", default=None, type=str, help="ckpt path")
args = parser.parse_args()
local_rank = int(os.environ["LOCAL_RANK"]) if "LOCAL_RANK" in os.environ else -1
if local_rank != -1:
torch.distributed.init_process_group(backend="nccl")
torch.cuda.set_device(local_rank)
seed = 1234
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
model = Model(local_rank) # NOTE: `Model` is not an nn.Module()
if local_rank <= 0:
n_parameters = sum(p.numel() for p in model.net.parameters() if p.requires_grad)
print(f'Number of parameters: {n_parameters}')
train(model, local_rank)