Skip to content

Latest commit

 

History

History
309 lines (242 loc) · 15.6 KB

README.md

File metadata and controls

309 lines (242 loc) · 15.6 KB

MANDO-HGT: Heterogeneous Graph Transformers for Smart Contract Vulnerability Detection

python slither dgl

MANDO HGT Logo

Overview

This repository is the implementation of MANDO-HGT which should be applicable to either source code or bytecode/binary form of software programs to cater to different situations where the source code of the software may or may not be available.

MANDO HGT overview

code snippet source code cg cfg

code snippet bytecode cfg

Citation

Nguyen, H. H., Nguyen, N.M., Xie, C., Ahmadi, Z., Kudenko, D., Doan, T. N., & Jiang, L. (2023, May). MANDO-HGT: Heterogeneous Graph Transformers for Smart Contract Vulnerability Detection. In Proceedings of 20th International Conference on Mining Software Repositories (MSR' 23), Melbourne, Australia, 2023. Preprint

@inproceedings{nguyen2023msr,
  author = {Nguyen, Hoang H. and Nguyen, Nhat-Minh and Xie, Chunyao and Ahmadi, Zahra and Kudenko, Daniel and Doan, Thanh-Nam and Jiang, Lingxiao},
  title = {MANDO-HGT: Heterogeneous Graph Transformers for Smart Contract Vulnerability Detection},
  year = {2023},
  month = {5},
  booktitle = {Proceedings of the 20th International Conference on Mining Software Repositories},
  numpages = {13},
  keywords = {vulnerability detection, smart contracts, source code, bytecode, heterogeneous graph learning, graph transformer},
  location = {Melbourne, Australia},
  series = {MSR '23}
}

Table of contents

How to train the models?

Dataset

Source code

Byte code

  • We used Solc compilation of Crytic-compile to compile EVM creation/runtime bytecode from the source code of smart contracts. Then we used EtherSolve to generate CFGs for bytecode.

System Description

We run all experiments on

  • Ubuntu 20.04
  • CUDA 11.1
  • NVIDA 3080

Install Environment

Install python required packages.

pip install -r requirements.txt -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html -f https://data.pyg.org/whl/torch-1.8.0+cu111.html -f https://data.dgl.ai/wheels/repo.html

Inspection scripts

We provied inspection scripts for Graph Classification and Node Classification tasks as well as their required data.

Graph Classification

Training Phase

python -m experiments.graph_classification --epochs 50 --repeat 20

To show the result table

python -m experiments.graph_classification --result

Node Classification

Training Phase

python -m experiments.node_classification --epochs 50 --repeat 20

To show the result table

python -m experiments.node_classification --result
  • We currently supported 7 types of bug: access_control, arithmetic, denial_of_service, front_running, reentrancy, time_manipulation, unchecked_low_level_calls.

  • Run the inspection

Trainer

Graph Classification

Usage

usage: MANDO Graph Classifier [-h] [-s SEED] [-ld LOG_DIR]
                              [--output_models OUTPUT_MODELS]
                              [--compressed_graph COMPRESSED_GRAPH]
                              [--dataset DATASET] [--testset TESTSET]
                              [--label LABEL] [--checkpoint CHECKPOINT]
                              [--feature_extractor FEATURE_EXTRACTOR]
                              [--node_feature NODE_FEATURE]
                              [--k_folds K_FOLDS] [--test] [--non_visualize]

optional arguments:
  -h, --help            show this help message and exit
  -s SEED, --seed SEED  Random seed

Storage:
  Directories for util results

  -ld LOG_DIR, --log-dir LOG_DIR
                        Directory for saving training logs and visualization
  --output_models OUTPUT_MODELS
                        Where you want to save your models

Dataset:
  Dataset paths

  --compressed_graph COMPRESSED_GRAPH
                        Compressed graphs of dataset which was extracted by
                        graph helper tools
  --dataset DATASET     Dicrectory of all souce code files which were used to
                        extract the compressed graph
  --testset TESTSET     Dicrectory of all souce code files which is a
                        partition of the dataset for testing
  --label LABEL         Label of sources in source code storage
  --checkpoint CHECKPOINT
                        Checkpoint of trained models

Node feature:
  Define the way to get node features

  --feature_extractor FEATURE_EXTRACTOR
                        If "node_feature" is "GAE" or "LINE" or "Node2vec", we
                        need a extracted features from those models
  --node_feature NODE_FEATURE
                        Kind of node features we want to use, here is one of
                        "nodetype", "metapath2vec", "han", "gae", "line",
                        "node2vec"

Optional configures:
  Advanced options

  --k_folds K_FOLDS     Config for cross validate strategy
  --test                Set true if you only want to run test phase
  --non_visualize       Wheather you want to visualize the metrics

Examples

  • We prepared some scripts for the custom MANDO structures bellow:

  • Graph Classication for Heterogeous Control Flow Graphs (HCFGs) which detect vulnerabilites at the contract level.

    • GAE as node features.
python graph_classifier.py -ld ./logs/graph_classification/cfg/gae/access_control --output_models ./models/graph_classification/cfg/gae/access_control --dataset ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/ --compressed_graph ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/cfg_compressed_graphs.gpickle --label ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/graph_labels.json --node_feature gae --feature_extractor ./experiments/ge-sc-data/source_code/gesc_matrices_node_embedding/matrix_gae_dim128_of_core_graph_of_access_control_cfg_clean_57_0.pkl --seed 1
  • Graph Classication for Heterogeous Call Graphs (HCGs) which detect vulnerabilites at the contract level.
    • LINE as node features.
python graph_classifier.py -ld ./logs/graph_classification/cg/line/access_control --output_models ./models/graph_classification/cg/line/access_control --dataset ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/ --compressed_graph ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/cg_compressed_graphs.gpickle --label ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/graph_labels.json --node_feature line --feature_extractor ./experiments/ge-sc-data/source_code/gesc_matrices_node_embedding/matrix_line_dim128_of_core_graph_of_access_control_cg_clean_57_0.pkl --seed 1
  • Graph Classication for combination of HCFGs and HCGs and which detect vulnerabilites at the contract level.
    • node2vec as node features.
python graph_classifier.py -ld ./logs/graph_classification/cfg_cg/node2vec/access_control --output_models ./models/graph_classification/cfg_cg/node2vec/access_control --dataset ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/ --compressed_graph ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/cfg_cg_compressed_graphs.gpickle --label ./experiments/ge-sc-data/source_code/access_control/clean_57_buggy_curated_0/graph_labels.json --node_feature node2vec --feature_extractor ./experiments/ge-sc-data/source_code/gesc_matrices_node_embedding/matrix_node2vec_dim128_of_core_graph_of_access_control_cfg_cg_clean_57_0.pkl --seed 1

Node Classification

  • We used node classification tasks to detect vulnerabilites at the line level and function level for Heterogeneous Control flow graph (HCFGs) and Call Graphs (HCGs) in corressponding.

Usage

usage: MANDO Node Classifier [-h] [-s SEED] [-ld LOG_DIR]
                             [--output_models OUTPUT_MODELS]
                             [--compressed_graph COMPRESSED_GRAPH]
                             [--dataset DATASET] [--testset TESTSET]
                             [--label LABEL]
                             [--feature_compressed_graph FEATURE_COMPRESSED_GRAPH]
                             [--cfg_feature_extractor CFG_FEATURE_EXTRACTOR]
                             [--feature_extractor FEATURE_EXTRACTOR]
                             [--node_feature NODE_FEATURE] [--k_folds K_FOLDS]
                             [--test] [--non_visualize]

optional arguments:
  -h, --help            show this help message and exit
  -s SEED, --seed SEED  Random seed

Storage:
  Directories \for util results

  -ld LOG_DIR, --log-dir LOG_DIR
                        Directory for saving training logs and visualization
  --output_models OUTPUT_MODELS
                        Where you want to save your models

Dataset:
  Dataset paths

  --compressed_graph COMPRESSED_GRAPH
                        Compressed graphs of dataset which was extracted by
                        graph helper tools
  --dataset DATASET     Dicrectory of all souce code files which were used to
                        extract the compressed graph
  --testset TESTSET     Dicrectory of all souce code files which is a
                        partition of the dataset for testing
  --label LABEL

Node feature:
  Define the way to get node features

  --feature_compressed_graph FEATURE_COMPRESSED_GRAPH
                        If "node_feature" is han, you mean use 2 HAN layers.
                        The first one is HAN of CFGs as feature node for the
                        second HAN of call graph, This is the compressed
                        graphs were trained for the first HAN
  --cfg_feature_extractor CFG_FEATURE_EXTRACTOR
                        If "node_feature" is han, feature_extractor is a
                        checkpoint of the first HAN layer
  --feature_extractor FEATURE_EXTRACTOR
                        If "node_feature" is "GAE" or "LINE" or "Node2vec", we
                        need a extracted features from those models
  --node_feature NODE_FEATURE
                        Kind of node features we want to use, here is one of
                        "nodetype", "metapath2vec", "han", "gae", "line",
                        "node2vec"

Optional configures:
  Advanced options

  --k_folds K_FOLDS     Config cross validate strategy
  --test                If true you only want to run test phase
  --non_visualize       Wheather you want to visualize the metrics

Examples

We prepared some scripts for the custom MANDO structures bellow:

  • Node Classication for Heterogeous Control Flow Graphs (HCFGs) which detect vulnerabilites at the line level.

    • GAE as node features for detection access_control bugs.
    python node_classifier.py -ld ./logs/node_classification/cfg/gae/access_control --output_models ./models/node_classification/cfg/gae/access_control --dataset ./experiments/ge-sc-data/source_code/access_control/buggy_curated/ --compressed_graph ./experiments/ge-sc-data/source_code/access_control/buggy_curated/cfg_compressed_graphs.gpickle --node_feature gae --feature_extractor ./experiments/ge-sc-data/source_code/gesc_matrices_node_embedding/matrix_gae_dim128_of_core_graph_of_access_control_cfg_buggy_curated.pkl --testset ./experiments/ge-sc-data/source_code/access_control/curated --seed 1
  • Node Classification for Heterogeous Call Graphs (HCGs) which detect vulnerabilites at the function level.

  • The command lines are the same as CFG except the dataset.

    • LINE as node features for detection access_control bugs.
    python node_classifier.py -ld ./logs/node_classification/cg/line/access_control --output_models ./models/node_classification/cg/line/access_control --dataset ./experiments/ge-sc-data/source_code/access_control/buggy_curated --compressed_graph ./experiments/ge-sc-data/source_code/access_control/buggy_curated/cg_compressed_graphs.gpickle --node_feature line --feature_extractor ./experiments/ge-sc-data/source_code/gesc_matrices_node_embedding/matrix_line_dim128_of_core_graph_of_access_control_cg_buggy_curated.pkl --testset ./experiments/ge-sc-data/source_code/access_control/curated --seed 1
  • Node Classication for combination of HCFGs and HCGs and which detect vulnerabilites at the line level.

    • node2vec as node features.
    python node_classifier.py -ld ./logs/node_classification/cfg_cg/node2vec/access_control --output_models ./models/node_classification/cfg_cg/node2vec/access_control --dataset ./experiments/ge-sc-data/source_code/access_control/buggy_curated --compressed_graph ./experiments/ge-sc-data/source_code/access_control/buggy_curated/cfg_cg_compressed_graphs.gpickle --node_feature node2vec --feature_extractor ./experiments/ge-sc-data/source_code/gesc_matrices_node_embedding/matrix_node2vec_dim128_of_core_graph_of_access_control_cfg_cg_buggy_curated.pkl --testset ./experiments/ge-sc-data/source_code/access_control/curated --seed 1
  • We also stack 2 HAN layers for function-level detection. The first HAN layer is based on HCFGs used as feature for the second HAN layer based on HCGs (It will be deprecated in a future version).

python node_classifier.py -ld ./logs/node_classification/call_graph/node2vec_han/access_control --output_models ./models/node_classification/call_graph/node2vec_han/access_control --dataset ./ge-sc-data/node_classification/cg/access_control/buggy_curated --compressed_graph ./ge-sc-data/node_classification/cg/access_control/buggy_curated/compressed_graphs.gpickle --testset ./ge-sc-data/node_classification/cg/curated/access_control --seed 1  --node_feature han --feature_compressed_graph ./data/smartbugs_wild/binary_class_cfg/access_control/buggy_curated/compressed_graphs.gpickle --cfg_feature_extractor ./data/smartbugs_wild/embeddings_buggy_currated_mixed/cfg_mixed/gesc_matrices_node_embedding/matrix_node2vec_dim128_of_core_graph_of_access_control_compressed_graphs.pkl --feature_extractor ./models/node_classification/cfg/node2vec/access_control/han_fold_0.pth

Testing

  • We automatically run testing after training phase for now.

Visuallization

  • You also use tensorboard and take a look the trend of metrics for both training phase and testing phase.
tensorboard --logdir LOG_DIR