forked from XuhanLiu/DrugEx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
224 lines (201 loc) · 9.92 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from rdkit import Chem
import pandas as pd
import numpy as np
from rdkit.Chem import Draw
from utils.metric import logP_mw, dimension
import seaborn as sns
from matplotlib_venn import venn3
from scipy import stats
from matplotlib import pyplot as plt
def figure3(out='Figure_3.tif'):
fig = plt.figure(figsize=(8, 8))
dataset = ['LIGAND+', 'LIGAND-', 'LIGAND0', 'ChEMBL']
ax1 = fig.add_subplot(221)
num = pd.DataFrame(columns=['Num', 'Set'])
for ds in dataset:
sub = pd.read_table('figures/%s_num.txt' % ds, dtype=float)
sub['Set'] = ds
num = num.append(sub)
num = num.dropna()
sns.set(style="white", palette="pastel", color_codes=True)
sns.violinplot(x='Set', y='Num', data=num, order=dataset, linewidth=1.5, bw=0.8)
plt.text(0.02, 0.95, chr(ord('A')), fontweight="bold", transform=ax1.transAxes)
ax1.set(ylim=[0.0, 15.0], xlabel='Dataset', ylabel='Number of Fragments per Molecule')
frags = []
ax2 = fig.add_subplot(222)
for ds in dataset:
sub = pd.read_table('figures/%s_frag.txt' % ds)
frag = set(sub['Frags'])
frags.append(frag)
sns.kdeplot(sub['MW'], shade=True, linewidth=1.5, label=ds)
plt.text(0.02, 0.95, chr(ord('B')), fontweight="bold", transform=ax2.transAxes)
ax2.set(xlabel='Molecular Weight', ylabel='Value')
ax3 = fig.add_subplot(223)
for ds in dataset:
sub = np.loadtxt('figures/%s_div.txt' % ds)
np.fill_diagonal(sub, np.NaN)
sub = sub[sub == sub]
sns.kdeplot(sub, shade=True, linewidth=1.5, label=ds)
plt.text(0.02, 0.95, chr(ord('C')), fontweight="bold", transform=ax3.transAxes)
ax3.set(xlim=[0.0, 0.5], xlabel='Tanimoto Similarity', ylabel='Value')
ax4 = fig.add_subplot(224)
venn3(frags[:-1], set_labels=dataset)
plt.text(0.02, 0.95, chr(ord('D')), fontweight="bold", transform=ax4.transAxes)
fig.subplots_adjust(wspace=0.5, hspace=0.5)
# plt.tight_layout()
if out is None:
plt.show()
else:
plt.savefig(out, dpi=600, bbox_inches = "tight", pil_kwargs={"compression": "tiff_lzw"})
def figure4():
fnames = ['data/chembl_mf_brics_test.txt', 'benchmark/chembl_mix.txt']
labels, keys = [], []
fig = plt.figure(figsize=(12, 8))
lab = ['ChEMBL Set', 'Pre-trained Model']
ax1 = fig.add_subplot(231)
df = logP_mw(fnames)
group0, group1 = df[df.LABEL == 0], df[df.LABEL == 1]
plt.text(0.05, 0.9, chr(ord('A')), fontweight="bold", transform=ax1.transAxes)
ax1.scatter(group0.MWT, group0.LOGP, s=1, marker='o', label=lab[0], c='', edgecolor=colors[0])
ax1.scatter(group1.MWT, group1.LOGP, s=10, marker='o', label=lab[1], c='', edgecolor=colors[1])
ax1.set(ylabel='LogP', xlabel='Molecular Weight', xlim=[0, 1000], ylim=[-5, 10])
handle, label = ax1.get_legend_handles_labels()
labels.extend(handle)
keys.extend(label)
ax2 = fig.add_subplot(232)
df, ratio = dimension(fnames, fp='physchem')
group0, group1 = df[df.LABEL == 0], df[df.LABEL == 1]
plt.text(0.05, 0.9, chr(ord('C')), fontweight="bold", transform=ax2.transAxes)
ax2.scatter(group0.X, group0.Y, s=1, marker='o', label=lab[0], c='', edgecolor=colors[0])
ax2.scatter(group1.X, group1.Y, s=10, marker='o', label=lab[1], c='', edgecolor=colors[1])
ax2.set(ylabel='Principal Component 2 (%.2f%%)' % (ratio[1] * 100),
xlabel='Principal Component 1 (%.2f%%)' % (ratio[0] * 100))
ax3 = fig.add_subplot(233)
# df, ratio = dimension(fnames, alg='TSNE')
df = pd.read_table('t-SNE_pr.txt')
group0, group1 = df[df.LABEL == 0], df[df.LABEL == 1]
plt.text(0.05, 0.9, chr(ord('E')), fontweight="bold", transform=ax3.transAxes)
ax3.scatter(group0.X, group0.Y, s=1, marker='o', label=lab[0], c='', edgecolor=colors[0])
ax3.scatter(group1.X, group1.Y, s=10, marker='o', label=lab[1], c='', edgecolor=colors[1])
ax3.set(ylabel='Component 2', xlabel='Component 1')
fnames = ['data/ligand_mf_brics_test.txt', 'benchmark/ligand_mix.txt']
lab = ['LIGAND Set', 'Fine-tuned Model']
ax4 = fig.add_subplot(234)
df = logP_mw(fnames)
group0, group1 = df[df.LABEL == 0], df[df.LABEL == 1]
plt.text(0.05, 0.9, chr(ord('B')), fontweight="bold", transform=ax4.transAxes)
ax4.scatter(group0.MWT, group0.LOGP, s=10, marker='o', label=lab[0], c='', edgecolor=colors[2])
ax4.scatter(group1.MWT, group1.LOGP, s=1, marker='o', label=lab[1], c='', edgecolor=colors[3])
ax4.set(ylabel='LogP', xlabel='Molecular Weight', xlim=[0, 1000], ylim=[-5, 10])
handle, label = ax4.get_legend_handles_labels()
labels.extend(handle)
keys.extend(label)
ax5 = fig.add_subplot(235)
df, ratio = dimension(fnames, fp='physchem')
group0, group1 = df[df.LABEL == 0], df[df.LABEL == 1]
plt.text(0.05, 0.9, chr(ord('D')), fontweight="bold", transform=ax5.transAxes)
ax5.scatter(group0.X, group0.Y, s=10, marker='o', label=lab[0], c='', edgecolor=colors[2])
ax5.scatter(group1.X, group1.Y, s=1, marker='o', label=lab[1], c='', edgecolor=colors[3])
ax5.set(ylabel='Principal Component 2 (%.2f%%)' % (ratio[1] * 100),
xlabel='Principal Component 1 (%.2f%%)' % (ratio[0] * 100))
ax6 = fig.add_subplot(236)
# df, ratio = dimension(fnames, alg='TSNE')
df = pd.read_table('t-SNE_ft.txt')
group0, group1 = df[df.LABEL == 0], df[df.LABEL == 1]
plt.text(0.05, 0.9, chr(ord('F')), fontweight="bold", transform=ax6.transAxes)
ax6.scatter(group0.X, group0.Y, s=10, marker='o', label=lab[0], c='', edgecolor=colors[2])
ax6.scatter(group1.X, group1.Y, s=1, marker='o', label=lab[1], c='', edgecolor=colors[3])
ax6.set(ylabel='Component 2', xlabel='Component 1')
fig.legend(labels, keys, loc="lower center", ncol=len(keys), bbox_to_anchor=(0.45, 0.00))
fig.subplots_adjust(wspace=0.5, hspace=0.5)
# plt.tight_layout()
plt.savefig('Figure_4.tif', dpi=600, bbox_inches = "tight", pil_kwargs={"compression": "tiff_lzw"})
def figure5():
fig = plt.figure(figsize=(8, 8))
objs = ['QED', 'SA']
ix = 0
keys, labels = [], []
methods = ['ved', 'attn', 'gpt', 'graph']
for i, d in enumerate(['chembl', 'ligand']):
labs = ['ChEMBL Set' if d == 'chembl' else 'LIGAND Set',
'LSTM-BASE', 'LSTM+ATTN', 'Sequence Transformer', 'Graph Transformer']
dfs = {}
fnames = ['benchmark/%s_set_qed_sa.txt' % d] + ['benchmark/%s_%s_qed_sa.txt' % (d, m) for m in methods]
for j, fname in enumerate(fnames):
dfs[labs[j]] = pd.read_table(fname)
for k, obj in enumerate(objs):
ix += 1
ax = plt.subplot(220 + ix)
plt.text(0.02, 0.9, chr(ord('A') + ix - 1), fontweight="bold", transform=ax.transAxes)
for l, (key, df) in enumerate(dfs.items()):
if obj in ['SA']:
xx = np.linspace(0, 10, 1000)
else:
xx = np.linspace(0, 1, 1000)
data = df[obj].values
density = stats.gaussian_kde(data)(xx)
if key in ['ChEMBL Set']:
color = colors[0]
elif key in ['LIGAND Set']:
color = colors[1]
else:
color = colors[l+1]
label = plt.plot(xx, density, c=color)[0]
if (i == 0 and k == 0) or (key in ['LIGAND Set'] and k == 0):
keys.append(key)
labels.append(label)
# ax.title(obj + ' Score')
fig.legend(labels, keys, loc="upper center", ncol=3, bbox_to_anchor=(0.45, 0.08))
fig.subplots_adjust(wspace=0.35, hspace=0.35)
fig.savefig('figure_5.tif', dpi=600, bbox_inches="tight", pil_kwargs={"compression": "tiff_lzw"})
def figure6():
fig = plt.figure(figsize=(12, 8))
er = ['0e+00', '1e-01', '2e-01', '3e-01', '4e-01', '5e-01']
ers = {'0e+00': '0.0', '1e-01': '0.1', '2e-01': '0.2', '3e-01': '0.3', '4e-01': '0.4', '5e-01': '0.5'}
# df = dimension(['benchmark/ligand_rl_%s.txt' % e for e in ers], alg='TSNE')
# df.to_csv('t-SNE.txt', index=False, sep='\t')
df = pd.read_table('t-SNE.txt')
for i, e in enumerate(er):
group0 = df[df.LABEL == 0]
# group0 = group0[group0['QED'] > 0.4]
group1 = df[df.LABEL == i + 1]
ax = fig.add_subplot(231 + i)
plt.text(0.02, 0.9, chr(ord('A') + i), fontweight="bold", transform=ax.transAxes)
ax.scatter(group1.X, group1.Y, s=10, marker='.', label='ε = %s' % ers[e], c='', edgecolor=colors[2])
ax.scatter(group0.X, group0.Y, s=10, marker='o', label='LIGAND set', c='', edgecolor=colors[1])
ax.set(ylabel='Component 2', xlabel='Component 1')
ax.legend(loc='upper right')
plt.savefig('Figure_6.tif', dpi=600, bbox_inches = "tight", pil_kwargs={"compression": "tiff_lzw"})
def figure7():
df = pd.read_table('benchmark/ligand_rl_2e-01.txt')
df = df[df.DESIRE == 1]
subs = ['c1cocc1.n1cncnc1.n1c[nH]nc1',
'c1cocc1.O=c1[nH]c(=O)c2nc[nH]c2[nH]1', 'c1cocc1.Nc1ncc2[nH]nnc2n1',
'c1cocc1.n1cncnc1', 'c1cocc1.n1c[nH]nc1','n1cncnc1.n1c[nH]nc1']
subset = {sub: [] for sub in subs}
submol = {sub: Chem.MolFromSmiles(sub) for sub in subs}
for smile in df.Smiles:
if smile != smile: continue
mol = Chem.MolFromSmiles(smile)
for sub in subs:
s = submol[sub]
match = mol.HasSubstructMatch(s)
if match:
subset[sub].append(smile)
break
for i, sub in enumerate(subs[::-1]):
if len(subset[sub]) > 120:
mol = list(subset[sub])[:60]
else:
mol = list(subset[sub])
mols = [Chem.MolFromSmiles(m) for m in mol]
img = Draw.MolsToGridImage(mols, molsPerRow=6, subImgSize=(400, 300))
img.save('figures/figure_6_%d.tif' % i)
print(mol)
if __name__ == '__main__':
colors = ['#ff7f0e', '#1f77b4', '#d62728', '#2ca02c', '#9467bd', 'cyan'] # orange, blue, green, red, purple
figure3()
figure4()
figure5()
figure6()
figure7()