forked from XuhanLiu/DrugEx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdesigner.py
78 lines (66 loc) · 2.82 KB
/
designer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
import torch
from rdkit import rdBase
from models import generator
import utils
import pandas as pd
from models import GPT2Model, GraphModel
from torch.utils.data import DataLoader
import getopt
import sys
import os
rdBase.DisableLog('rdApp.error')
torch.set_num_threads(1)
BATCH_SIZE = 1024
if __name__ == "__main__":
opts, args = getopt.getopt(sys.argv[1:], "m:d:g:p:")
OPT = dict(opts)
# torch.cuda.set_device(0)
os.environ["CUDA_VISIBLE_DEVICES"] = OPT['-g'] if '-g' in OPT else "0, 1, 2, 3"
method = OPT['-m'] if '-m' in OPT else 'atom'
dataset = OPT['-d'] if '-d' in OPT else 'ligand_mf_brics'
path = OPT['-p'] if '-p' in OPT else dataset
utils.devices = [0]
if method in ['gpt']:
voc = utils.Voc('data/voc_smiles.txt', src_len=100, trg_len=100)
else:
voc = utils.VocSmiles('data/voc_smiles.txt', max_len=100)
if method == 'ved':
agent = generator.EncDec(voc, voc).to(utils.dev)
elif method == 'attn':
agent = generator.Seq2Seq(voc, voc).to(utils.dev)
elif method == 'gpt':
agent = GPT2Model(voc, n_layer=12).to(utils.dev)
else:
voc = utils.VocGraph('data/voc_graph.txt')
agent = GraphModel(voc_trg=voc)
for agent_path in ['benchmark/graph_PR_REG_OBJ1_0e+00.pkg', 'benchmark/graph_PR_REG_OBJ1_1e-01.pkg',
'benchmark/graph_PR_REG_OBJ1_1e-02.pkg', 'benchmark/graph_PR_REG_OBJ1_1e-03.pkg',
'benchmark/graph_PR_REG_OBJ1_1e-04.pkg', 'benchmark/graph_PR_REG_OBJ1_1e-05.pkg']:
# agent_path = 'output/%s_%s_256.pkg' % (path, method)
print(agent_path)
agent.load_state_dict(torch.load(agent_path))
z = 'REG'
keys = ['A2A']
A2A = utils.Predictor('output/env/RF_%s_CHEMBL251.pkg' % z, type=z)
QED = utils.Property('QED')
# Chose the desirability function
objs = [A2A, QED]
ths = [6.5, 0.0]
env = utils.Env(objs=objs, mods=None, keys=keys, ths=ths)
if method in ['atom']:
data = pd.read_table('data/ligand_mf_brics_test.txt')
# data = data.sample(BATCH_SIZE * 10)
data = torch.from_numpy(data.values).long().view(len(data), voc.max_len, -1)
loader = DataLoader(data, batch_size=BATCH_SIZE)
out = '%s.txt' % agent_path
else:
data = pd.read_table('data/%s_test.txt' % dataset).Input.drop_duplicates()
# data = data.sample(BATCH_SIZE * 10)
data = voc.encode([seq.split(' ')[:-1] for seq in data.values])
loader = DataLoader(data, batch_size=BATCH_SIZE)
out = agent_path + '.txt'
frags, smiles, scores = agent.evaluate(loader, repeat=10, method=env)
scores['Frags'] = frags
scores['Smiles'] = smiles
scores.to_csv(out, index=False, sep='\t')