Skip to content

Latest commit

 

History

History
156 lines (128 loc) · 7.94 KB

README.md

File metadata and controls

156 lines (128 loc) · 7.94 KB

shufflev2-yolov5:lighter, faster and easier to deploy

0111

在yolov5上进行一系列的消融实验,使其更轻(Flops更小,内存更低,参数更少)和更快(添加shuffle channel,yolov5 head for channel reduce。在input_size为320×320的树莓派4B上可以推断至少每秒 10 帧)并且更容易部署(去除 Focus 层和四次切片操作,将模型量化精度降低到可接受的范围内)。

Comparison of ablation experiment results

ID Model Input_size Flops Params Size(M) [email protected] [email protected]:0.95
001 yolo-faster 320×320 0.25G 0.35M 1.4 24.4 -
002 nanodet-m 320×320 0.72G 0.95M 1.8 - 20.6
003 shufflev2-yolov5 320×320 1.43G 1.62M 3.3 35.5 -
004 nanodet-m 416×416 1.2G 0.95M 1.8 - 23.5
005 shufflev2-yolov5 416×416 2.42G 1.62M 3.3 40.5 23.5
006 yolov4-tiny 416×416 5.62G 8.86M 33.7 40.2 21.7
007 yolov3-tiny 416×416 6.96G 6.06M 23.0 33.1 16.6

Comparison on different platforms

Equipment Computing backend System Framework Input Speed{our} Speed{yolov5s}
Inter @i5-10210U window(x86) 640×640 torch-cpu 112ms 179ms
Nvidia @RTX 2080Ti Linux(x86) 640×640 torch-gpu 11ms 13ms
Raspberrypi 4B @ARM Cortex-A72 Linux(arm64) 320×320 ncnn 97ms 371ms

Detection effect

Pytorch{640×640}:

person

NCNN{FP16}@{640×640}:

image

NCNN{Int8}@{640×640}:

image

Base on YOLOv5

image

10FPS can be used with yolov5 on the Raspberry Pi with only 0.1T computing power

Excluding the first three warm-ups, the device temperature is stable above 45°, the forward reasoning framework is ncnn, and the two benchmark comparisons are recorded

# 第四次
pi@raspberrypi:~/Downloads/ncnn/build/benchmark $ ./benchncnn 8 4 0
loop_count = 8
num_threads = 4
powersave = 0
gpu_device = -1
cooling_down = 1
    shufflev2-yolov5  min =   90.86  max =   93.53  avg =   91.56
shufflev2-yolov5-int8  min =   83.15  max =   84.17  avg =   83.65
shufflev2-yolov5-416  min =  154.51  max =  155.59  avg =  155.09
         yolov4-tiny  min =  298.94  max =  302.47  avg =  300.69
           nanodet_m  min =   86.19  max =  142.79  avg =   99.61
          squeezenet  min =   59.89  max =   60.75  avg =   60.41
     squeezenet_int8  min =   50.26  max =   51.31  avg =   50.75
           mobilenet  min =   73.52  max =   74.75  avg =   74.05
      mobilenet_int8  min =   40.48  max =   40.73  avg =   40.63
        mobilenet_v2  min =   72.87  max =   73.95  avg =   73.31
        mobilenet_v3  min =   57.90  max =   58.74  avg =   58.34
          shufflenet  min =   40.67  max =   41.53  avg =   41.15
       shufflenet_v2  min =   30.52  max =   31.29  avg =   30.88
             mnasnet  min =   62.37  max =   62.76  avg =   62.56
     proxylessnasnet  min =   62.83  max =   64.70  avg =   63.90
     efficientnet_b0  min =   94.83  max =   95.86  avg =   95.35
   efficientnetv2_b0  min =  103.83  max =  105.30  avg =  104.74
        regnety_400m  min =   76.88  max =   78.28  avg =   77.46
           blazeface  min =   13.99  max =   21.03  avg =   15.37
           googlenet  min =  144.73  max =  145.86  avg =  145.19
      googlenet_int8  min =  123.08  max =  124.83  avg =  123.96
            resnet18  min =  181.74  max =  183.07  avg =  182.37
       resnet18_int8  min =  103.28  max =  105.02  avg =  104.17
             alexnet  min =  162.79  max =  164.04  avg =  163.29
               vgg16  min =  867.76  max =  911.79  avg =  889.88
          vgg16_int8  min =  466.74  max =  469.51  avg =  468.15
            resnet50  min =  333.28  max =  338.97  avg =  335.71
       resnet50_int8  min =  239.71  max =  243.73  avg =  242.54
      squeezenet_ssd  min =  179.55  max =  181.33  avg =  180.74
 squeezenet_ssd_int8  min =  131.71  max =  133.34  avg =  132.54
       mobilenet_ssd  min =  151.74  max =  152.67  avg =  152.32
  mobilenet_ssd_int8  min =   85.51  max =   86.19  avg =   85.77
      mobilenet_yolo  min =  327.67  max =  332.85  avg =  330.36
  mobilenetv2_yolov3  min =  221.17  max =  224.84  avg =  222.60

# 第八次
pi@raspberrypi:~/Downloads/ncnn/build/benchmark $ ./benchncnn 8 4 0
loop_count = 8
num_threads = 4
powersave = 0
gpu_device = -1
cooling_down = 1
           nanodet_m  min =   84.03  max =   87.68  avg =   86.32
       nanodet_m-416  min =  143.89  max =  145.06  avg =  144.67
    shufflev2-yolov5  min =   84.30  max =   86.34  avg =   85.79
shufflev2-yolov5-int8  min =   80.98  max =   82.80  avg =   81.25
shufflev2-yolov5-416  min =  142.75  max =  146.10  avg =  144.34
         yolov4-tiny  min =  276.09  max =  289.83  avg =  285.99
           nanodet_m  min =   81.15  max =   81.71  avg =   81.33
          squeezenet  min =   59.37  max =   61.19  avg =   60.35
     squeezenet_int8  min =   49.30  max =   49.66  avg =   49.43
           mobilenet  min =   72.40  max =   74.13  avg =   73.37
      mobilenet_int8  min =   39.92  max =   40.23  avg =   40.07
        mobilenet_v2  min =   71.57  max =   73.07  avg =   72.29
        mobilenet_v3  min =   54.75  max =   56.00  avg =   55.40
          shufflenet  min =   40.07  max =   41.13  avg =   40.58
       shufflenet_v2  min =   29.39  max =   30.25  avg =   29.86
             mnasnet  min =   59.54  max =   60.18  avg =   59.96
     proxylessnasnet  min =   61.06  max =   62.63  avg =   61.75
     efficientnet_b0  min =   91.86  max =   95.01  avg =   92.84
   efficientnetv2_b0  min =  101.03  max =  102.61  avg =  101.71
        regnety_400m  min =   76.75  max =   78.58  avg =   77.60
           blazeface  min =   13.18  max =   14.67  avg =   13.79
           googlenet  min =  136.56  max =  138.05  avg =  137.14
      googlenet_int8  min =  118.30  max =  120.17  avg =  119.23
            resnet18  min =  164.78  max =  166.80  avg =  165.70
       resnet18_int8  min =   98.58  max =   99.23  avg =   98.96
             alexnet  min =  155.06  max =  156.28  avg =  155.56
               vgg16  min =  817.64  max =  832.21  avg =  827.37
          vgg16_int8  min =  457.04  max =  465.19  avg =  460.64
            resnet50  min =  318.57  max =  323.19  avg =  320.06
       resnet50_int8  min =  237.46  max =  238.73  avg =  238.06
      squeezenet_ssd  min =  171.61  max =  173.21  avg =  172.10
 squeezenet_ssd_int8  min =  128.01  max =  129.58  avg =  128.84
       mobilenet_ssd  min =  145.60  max =  149.44  avg =  147.39
  mobilenet_ssd_int8  min =   82.86  max =   83.59  avg =   83.22
      mobilenet_yolo  min =  311.95  max =  374.33  avg =  330.15
  mobilenetv2_yolov3  min =  211.89  max =  286.28  avg =  228.01

More detailed explanation

Detailed model link: https://zhuanlan.zhihu.com/p/400545131

image

NCNN deployment and int8 quantization:https://zhuanlan.zhihu.com/p/400975662

image

Reference

https://github.com/Tencent/ncnn

https://github.com/ultralytics/yolov5

https://github.com/megvii-model/ShuffleNet-Series