-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathuniq.py
211 lines (169 loc) · 9.06 KB
/
uniq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import torch.nn as nn
import actquant
import quantize
def save_state(self, _):
self.full_parameters = {}
layers_list = self.layers_list()
layers_steps = self.layers_steps()
self.full_parameters = quantize.backup_weights(layers_list, {})
if self.quant and not self.training and not self.statistics_phase:
for i in range(len(layers_steps)):
self.quantize.quantize_uniform_improved(layers_steps[i])
if self.quantize.hardware_clamp:
self.quantize.assign_act_clamp_during_val(layers_list)
self.quantize.assign_weight_clamp_during_val(layers_list)
elif self.quant and self.training:
if self.allow_grad:
for i in range(self.quant_stage_for_grads):
self.quantize.quantize_uniform_improved(layers_steps[i])
else:
if self.noise:
self.quantize.add_improved_uni_noise(layers_steps[self.training_stage])
for i in range(self.training_stage):
self.quantize.quantize_uniform_improved(layers_steps[i])
def restore_state(self, _, __):
layers_list = self.layers_list()
quantize.restore_weights(layers_list, self.full_parameters)
class UNIQNet(nn.Module):
def __init__(self, quant_epoch_step,quant_start_stage, quant=False, noise=False, bitwidth=32, step=2,
quant_edges=True, act_noise=True, step_setup=[15, 9], act_bitwidth=32, act_quant=False, uniq=False,
std_act_clamp=5, std_weight_clamp=3.45, wrpn=False,quant_first_layer=False,
num_of_layers_each_step=1, noise_mask=0.05):
super(UNIQNet, self).__init__()
self.quant_epoch_step = quant_epoch_step
self.quant_start_stage = quant_start_stage
self.quant = quant
self.noise = noise
self.wrpn = wrpn
if isinstance(bitwidth, list):
assert (len(bitwidth) == step)
self.bitwidth = bitwidth
else:
self.bitwidth = [bitwidth for _ in range(step)]
self.training_stage = 0
self.step = step
self.num_of_layers_each_step = num_of_layers_each_step
self.act_noise = act_noise
self.act_quant = act_quant
self.act_bitwidth = act_bitwidth
self.quant_edges = quant_edges
self.quant_first_layer = quant_first_layer
self.register_forward_pre_hook(save_state)
self.register_forward_hook(restore_state)
self.layers_b_dict = None
self.noise_mask_init = 0. if not noise else noise_mask
self.quantize = quantize.quantize(bitwidth, self.act_bitwidth, None, std_act_clamp=std_act_clamp,
std_weight_clamp=std_weight_clamp, noise_mask=self.noise_mask_init)
self.statistics_phase = False
self.allow_grad = False
self.random_noise_injection = False
self.open_grad_after_each_stage = True
self.quant_stage_for_grads = quant_start_stage
self.noise_level = 0
self.noise_batch_counter = 0
def layers_list(self):
modules_list = list(self.modules())
quant_layers_list = [x for x in modules_list if
isinstance(x, nn.Conv2d) or isinstance(x, nn.Linear) or isinstance(x, actquant.ActQuant)
or isinstance(x, actquant.ActQuantDeepIspPic) or isinstance(x, actquant.ActQuantWRPN)
or isinstance(x, nn.BatchNorm2d)]
if not self.quant_edges:
if self.act_quant:
quant_layers_list[-2].quant = False
quant_layers_list = quant_layers_list[1:-2]
else:
quant_layers_list = quant_layers_list[1:-1]
else:
if not self.quant_first_layer:
quant_layers_list = quant_layers_list[1:] #remove first weight. this mode quant last layer, but not first
return quant_layers_list
def layers_steps(self):
split_layers = self.split_one_layer_with_parameter_in_step()
return split_layers
def count_of_parameters_layer_in_list(self,list):
counter = 0
for layer in list:
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
counter += 1
return counter
def split_one_layer_with_parameter_in_step(self):
layers = self.layers_list()
splited_layers = []
split_step = []
for layer in layers:
if (isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear)) and self.count_of_parameters_layer_in_list(split_step) == self.num_of_layers_each_step:
splited_layers.append(split_step)
split_step = []
split_step.append(layer)
else:
split_step.append(layer)
#add left layers
if len(split_step) > 0:
splited_layers.append(split_step)
return splited_layers
def switch_stage(self, epoch_progress):
"""
Switches the stage of network to the next one.
:return:
"""
layers_steps = self.layers_steps()
max_stage = len( layers_steps )
if self.training_stage >= max_stage + 1:
return
if self.open_grad_after_each_stage == False:
if (np.floor(epoch_progress / self.quant_epoch_step) + self.quant_start_stage > self.training_stage and self.training_stage < max_stage - 1):
self.training_stage += 1
print("Switching stage, new stage is: ", self.training_stage)
for step in layers_steps[:self.training_stage]:
for layer in step:
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear)\
or isinstance(layer, nn.BatchNorm2d):
for param in layer.parameters():
param.requires_grad = False
elif isinstance(layer, actquant.ActQuant) or isinstance(layer, actquant.ActQuantDeepIspPic) or isinstance(layer, actquant.ActQuantWRPN):
layer.quatize_during_training = True
layer.noise_during_training = False
if self.act_noise:
for layer in layers_steps[self.training_stage]: # Turn on noise only for current stage
if isinstance(layer, actquant.ActQuant) or isinstance(layer, actquant.ActQuantDeepIspPic) or isinstance(layer, actquant.ActQuantWRPN):
layer.noise_during_training = True
return True
elif (np.floor(epoch_progress / self.quant_epoch_step) + self.quant_start_stage > max_stage - 1 and self.allow_grad == False):
self.allow_grad = True
self.quant_stage_for_grads = self.training_stage + 1
self.random_noise_injection = False
print("Switching stage, allowing all grad to propagate. new stage is: ", self.training_stage)
for step in layers_steps[:self.training_stage]:
for layer in step:
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
for param in layer.parameters():
param.requires_grad = True
return True
return False
else:
if (np.floor( epoch_progress / self.quant_epoch_step) + self.quant_start_stage > self.training_stage and
self.training_stage < max_stage - 1):
self.training_stage += 1
print("Switching stage, new stage is: ", self.training_stage)
for step in layers_steps[:self.training_stage]:
for layer in step:
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear)\
or isinstance(layer, nn.BatchNorm2d):
for param in layer.parameters():
param.requires_grad = True
elif isinstance(layer, actquant.ActQuant) or isinstance(layer, actquant.ActQuantDeepIspPic) or isinstance(layer, actquant.ActQuantWRPN):
layer.quatize_during_training = True
layer.noise_during_training = False
if self.act_noise:
for layer in layers_steps[self.training_stage]: # Turn on noise only for current stage
if isinstance(layer, actquant.ActQuant) or isinstance(layer, actquant.ActQuantDeepIspPic) or isinstance(layer, actquant.ActQuantWRPN):
layer.noise_during_training = True
self.allow_grad = False
return True
if (np.floor(epoch_progress / self.quant_epoch_step) + self.quant_start_stage > max_stage - 1 and self.allow_grad == False):
self.allow_grad = True
self.quant_stage_for_grads = self.training_stage + 1
self.random_noise_injection = False
print("Switching stage, allowing all grad to propagate. new stage is: ", self.training_stage)
return False