-
Notifications
You must be signed in to change notification settings - Fork 34
/
depth_to_lidar.py
66 lines (56 loc) · 2.61 KB
/
depth_to_lidar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import numpy as np
from PIL import Image
import tqdm
from kitti_object import *
def depth_read(filename):
assert os.path.exists(filename), "file not found: {}".format(filename)
img_file = Image.open(filename)
depth_png = np.array(img_file, dtype=int)
img_file.close()
assert np.max(depth_png) > 255, \
"np.max(depth_png)={}, path={}".format(np.max(depth_png), filename)
depth = depth_png.astype(np.float) / 256.
return depth
def save_depth_as_bin(pc_velo, filename):
pc_velo.tofile(filename)
return
def depth_to_lidar(idx_filename, split, dense_depth_dir, pseudo_depth_dir):
dataset = kitti_object('data/kitti_sfd_seguv_twise', split)
data_idx_list = [int(line.rstrip()) for line in open(idx_filename)]
if not os.path.exists(pseudo_depth_dir):
os.makedirs(pseudo_depth_dir)
for data_idx in tqdm.tqdm(data_idx_list):
calib = dataset.get_calibration(data_idx)
img_rgb = dataset.get_image(data_idx)
dense_img_filename = os.path.join(dense_depth_dir, '%06d.png'%(data_idx))
img_depth_small = depth_read(dense_img_filename)
h, w, _ = img_rgb.shape
th,tw = img_depth_small.shape
i = h - th
j = int(round((w - tw) / 2.))
img_depth = np.zeros((h, w),dtype=np.float)
img_depth[i:i + th, j:j + tw] = img_depth_small
pc_uv = np.stack((img_depth > 0).nonzero(), axis=0).transpose()[:,::-1].astype(np.float32)
pc_z = img_depth[img_depth > 0].reshape(-1,1).astype(np.float32)
pc_uvz = np.concatenate([pc_uv,pc_z],axis=-1)
pc_velo = calib.project_image_to_velo(pc_uvz)
pc_rgb = img_rgb[img_depth > 0].reshape(-1,3).astype(np.float32)[:,::-1]
pc_seg = np.ones((pc_rgb.shape[0],1),dtype=pc_velo.dtype)
pc_velo_rgb_seg_uv = np.concatenate([pc_velo, pc_rgb, pc_seg, pc_uv],axis=-1)
dense_velo_filename = os.path.join(pseudo_depth_dir, '%06d.bin'%(data_idx))
save_depth_as_bin(pc_velo_rgb_seg_uv.astype(np.float32), dense_velo_filename)
print('---------------Start to generate training pseudo point clouds---------------')
depth_to_lidar( \
'data/kitti_sfd_seguv_twise/ImageSets/trainval.txt',
'training',
'data/kitti_sfd_seguv_twise/training/depth_dense_twise',
'data/kitti_sfd_seguv_twise/training/depth_pseudo_rgbseguv_twise'
)
print('---------------Start to generate testing pseudo point clouds---------------')
depth_to_lidar( \
'data/kitti_sfd_seguv_twise/ImageSets/test.txt',
'testing',
'data/kitti_sfd_seguv_twise/testing/depth_dense_twise',
'data/kitti_sfd_seguv_twise/testing/depth_pseudo_rgbseguv_twise'
)