传统 Synchronizd
package com.godfrey.demo01;
/**
* description : 模拟卖票
*
* @author godfrey
* @since 2020-05-14
*/
public class SaleTicketDemo01 {
public static void main(String[] args) {
Ticket ticket = new Ticket();
new Thread(() -> {
for (int i = 0; i < 60; i++) {
ticket.sale();
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 60; i++) {
ticket.sale();
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 60; i++) {
ticket.sale();
}
}, "C").start();
}
}
//资源类OOP
class Ticket {
private int number = 50;
public synchronized void sale() {
if (number > 0) {
System.out.println(Thread.currentThread().getName() + "卖出了第" + (50 - (--number)) + "票,剩余:" + number);
}
}
}
Synchronized(本质:队列+锁)和Lock区别
-
Synchronized 是内置关键字,Lock 是一个Java类
-
Synchronized 无法判断锁的状态,Lock 可以判断是否获取到了锁
-
Synchronized 会自动释放锁,Lock 必须手动释放!如果不释放锁,死锁
-
Synchronized 线程1(获得锁,阻塞)、线程2(等待,傻傻的等);Lock 锁就不一定会等待下去(tryLock)
-
Synchronized 可重入锁,不可中断,非公平;Lock 可重入锁 ,可以判断锁,非公平(可以自己设置);
-
Synchronized 适合锁少量的代码同步问题,Lock 适合锁大量的同步代码!
锁是什么,如何判断锁的是谁
Synchronized版生产者消费者问题
package proc;
/**
* description : 生产者消费者问题
*
* @author godfrey
* @since 2020-05-14
*/
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
}
}
// 判断等待,业务,通知
class Data {
private int number = 0;
//+1
public synchronized void increment() throws InterruptedException {
if (number != 0) {
//等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName() + "==>" + number);
//通知其他线程,我+1完毕了
this.notifyAll();
}
//-1
public synchronized void decrement() throws InterruptedException {
if (number == 0) {
//等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName() + "==>" + number);
//通知其他线程,我-1完毕了
this.notifyAll();
}
}
Lock接口
公平锁:十分公平:可以先来后到 非公平锁:十分不公平:可以插队 (默认)
package com.godfrey.demo01;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* description : 模拟卖票
*
* @author godfrey
* @since 2020-05-14
*/
public class SaleTicketDemo02 {
public static void main(String[] args) {
Ticket ticket = new Ticket();
new Thread(() -> { for (int i = 0; i < 40; i++) ticket.sale(); }, "A").start();
new Thread(() -> { for (int i = 0; i < 40; i++) ticket.sale(); }, "B").start();
new Thread(() -> { for (int i = 0; i < 40; i++) ticket.sale(); }, "C").start();
}
}
//Lock
class Ticket2 {
private int number = 30;
Lock lock = new ReentrantLock();
public synchronized void sale() {
lock.lock();
try {
if (number > 0) {
System.out.println(Thread.currentThread().getName() + "卖出了第" + (50 - (number--)) + "票,剩余:" + number);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
问题存在,ABCD四个线程!怎么解决?
if ==>while
package com.godfrey.proc;
/**
* description : Synchronized版生成者消费者问题
*
* @author godfrey
* @since 2020-05-14
*/
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "C").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "D").start();
}
}
// 判断等待,业务,通知
class Data {
private int number = 0;
//+1
public synchronized void increment() throws InterruptedException {
while (number != 0) {
//等待
this.wait();
}
number++;
System.out.println(Thread.currentThread().getName() + "==>" + number);
//通知其他线程,我+1完毕了
this.notifyAll();
}
//-1
public synchronized void decrement() throws InterruptedException {
while (number == 0) {
//等待
this.wait();
}
number--;
System.out.println(Thread.currentThread().getName() + "==>" + number);
//通知其他线程,我-1完毕了
this.notifyAll();
}
}
JUC版的生产者和消费者问题
通过Lock
package com.godfrey.proc;
/**
* description : Lock版生产者消费者问题
*
* @author godfrey
* @since 2020-05-14
*/
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class B {
public static void main(String[] args) {
Data2 data = new Data2();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "C").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "D").start();
}
}
// 判断等待,业务,通知
class Data2 {
private int number = 0;
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
//+1
public void increment() throws InterruptedException {
lock.lock();
try {
while (number != 0) {
//等待
condition.await();
}
number++;
System.out.println(Thread.currentThread().getName() + "==>" + number);
//通知其他线程,我+1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
//-1
public void decrement() throws InterruptedException {
lock.lock();
try {
while (number == 0) {
//等待
condition.await();
}
number--;
System.out.println(Thread.currentThread().getName() + "==>" + number);
//通知其他线程,我-1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
Condition的优势:精准通知和唤醒线程
package com.godfrey.proc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* description : 按顺序执行 A->B->C
*
* @author godfrey
* @since 2020-05-15
*/
public class C {
public static void main(String[] args) {
Data3 data = new Data3();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data.printA();
}
}, "A").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data.printB();
}
}, "B").start();
new Thread(() -> {
for (int i = 0; i < 10; i++) {
data.printC();
}
}, "C").start();
}
}
//资源类
class Data3 {
private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int number = 1; //1A 2B 3C
public void printA() {
lock.lock();
try {
//业务,判断->执行->通知
while (number != 1) {
//等待
condition1.await();
}
System.out.println(Thread.currentThread().getName() + "=>AAAAA");
//通知指定的人,B
number = 2;
condition2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printB() {
lock.lock();
try {
//业务,判断->执行->通知
while (number != 2) {
//等待
condition2.await();
}
System.out.println(Thread.currentThread().getName() + "=>BBBBB");
//通知指定的人,C
number = 3;
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printC() {
lock.lock();
try {
//业务,判断->执行->通知
while (number != 3) {
//等待
condition3.await();
}
System.out.println(Thread.currentThread().getName() + "=>CCCCC");
//通知指定的人,C
number = 1;
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
package com.godfrey.lock8;
import java.util.concurrent.TimeUnit;
/**
* description : 8锁:关于锁的8个问题
* 1.标准情况下 ,两个线程先打印发短信还是打电话? 1/发短信 2/打电话
* 2.sendSms延时4秒 ,两个线程先打印发短信还是打电话? 1/发短信 2/打电话
*
* @author godfrey
* @since 2020-05-15
*/
public class Test1 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(() -> {
phone.sendSms();
}, "A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
phone.call();
}, "B").start();
}
}
class Phone {
//synchronized 锁的对象是方法的调用者!
public synchronized void sendSms() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
}
package com.godfrey.lock8;
import java.util.concurrent.TimeUnit;
/**
* description : 8锁:关于锁的8个问题
* 3.增加了一个普通方法后!先执行发短信还是Hello? 普通方法
* 4.创建两个对象,!先执行发短信还是打电话? 打电话
*
* @author godfrey
* @since 2020-05-15
*/
public class Test2 {
public static void main(String[] args) {
//两个对象,两个调用者,两把锁
Phone2 phone1 = new Phone2();
Phone2 phone2 = new Phone2();
new Thread(() -> {
phone1.sendSms();
}, "A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
//phone1.hello();
phone2.call();
}, "B").start();
}
}
class Phone2 {
//synchronized 锁的对象是方法的调用者!
public synchronized void sendSms() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("发短信");
}
public synchronized void call() {
System.out.println("打电话");
}
//这里没有锁!不是同步方法,不受锁的影响
public void hello() {
System.out.println("Hello");
}
}
package com.godfrey.lock8;
import java.util.concurrent.TimeUnit;
/**
* description : 8锁:关于锁的8个问题
* 5.增加两个静态的同步方法,只要一个对象,先打样发短信还是打电话? 发短信
* 6.两个对象,增加两个静态的同步方法,只要一个对象,先打样发短信还是打电话? 发短信
*
* @author godfrey
* @since 2020-05-15
*/
public class Test3 {
public static void main(String[] args) {
//两个对象,两个调用者,两把锁
//static 静态方法
//类一加载就有了!锁的是class
//Phone3 phone = new Phone3();
Phone3 phone1 = new Phone3();
Phone3 phone2 = new Phone3();
new Thread(() -> {
//phone.sendSms();
phone1.sendSms();
}, "A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
phone2.call();
}, "B").start();
}
}
class Phone3 {
//synchronized 锁的对象是方法的调用者!
public static synchronized void sendSms() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("发短信");
}
public static synchronized void call() {
System.out.println("打电话");
}
}
package com.godfrey.lock8;
import java.util.concurrent.TimeUnit;
/**
* description : 8锁:关于锁的8个问题
* 7.一个静态同步方法一个普通方法,先打样发短信还是打电话? 打电话
* 8.一个静态同步方法一个普通方法,两个对象,先打样发短信还是打电话? 打电话
*
* @author godfrey
* @since 2020-05-15
*/
public class Test4 {
public static void main(String[] args) {
//Phone4 phone = new Phone4();
Phone4 phone1 = new Phone4();
Phone4 phone2 = new Phone4();
new Thread(() -> {
//phone.sendSms();
phone1.sendSms();
}, "A").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> {
phone2.call();
}, "B").start();
}
}
class Phone4 {
//静态同步方法,锁的对象是Class模板!
public static synchronized void sendSms() {
try {
TimeUnit.SECONDS.sleep(4);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("发短信");
}
//普通同步方法,锁的是调用者
public synchronized void call() {
System.out.println("打电话");
}
}
小结:看锁的是Class还是对象,看是否同一个调用者
List不安全
package com.godfrey.unsafe;
import java.util.*;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* description : java.util.ConcurrentModificationException 并发修改异常
*
* @author godfrey
* @since 2020-05-15
*/
public class ListTest {
public static void main(String[] args) {
//并发下 ArrayList不安全的
/**
* 解决方案:
* 1.List<String> list = new Vector<>();
* 2.List<String> list = Collections.synchronizedList(new ArrayList<>());
* 3.List<String> list = new CopyOnWriteArrayList<>();
*/
//CopyOnWrite 写入时复制COW 计算机程序设计 领域的一种优化策略
//多个线程调用的时候,list, 读取的时候,固定的,写入(覆盖)
//在写入的时候避免覆盖,造成数据问题!
//读写分离
//CopyOnWriteArrayList 比 Vector 牛逼在哪里?CopyOnWriteArrayList用Lock,Vector用Synchronized
List<String> list = new CopyOnWriteArrayList<>();
for (int i = 0; i < 10; i++) {
new Thread(() -> {
list.add(UUID.randomUUID().toString().substring(0, 5));
System.out.println(list);
}, String.valueOf(i)).start();
}
}
}
Set不安全
package com.godfrey.unsafe;
import java.util.Set;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArraySet;
/**
* description : java.util.ConcurrentModificationException 并发修改异常
*
* @author godfrey
* @since 2020-05-15
*/
public class SetTest {
public static void main(String[] args) {
//HashSet<String> set = new HashSet<>();
//并发下 HashSet不安全的
/**
* 解决方案:
* 1. Set<String> set = Collections.synchronizedSet(new HashSet<>());
* 2. Set<String> set = new CopyOnWriteArraySet<>();
*/
Set<String> set = new CopyOnWriteArraySet<>();
for (int i = 0; i < 100; i++) {
new Thread(() -> {
set.add(UUID.randomUUID().toString().substring(0, 5));
System.out.println(set);
}, String.valueOf(i)).start();
}
}
}
问:HashSet的底层是什么?
答:HashMap
public HashSet() {
map = new HashMap<>();
}
//add set的本质是map key
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
private static final Object PRESENT = new Object();
Map不安全
package com.godfrey.unsafe;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;
/**
* description : java.util.ConcurrentModificationException 并发修改异常
*
* @author godfrey
* @since 2020-05-15
*/
public class MapTest {
public static void main(String[] args) {
// Map<String, String> map= new HashMap<>();
// 等价于 Map<String, String> map = new HashMap<>(16,0.75f);//加载因子,初始化容量
//并发下 HashMap不安全的
/**
* 解决方案:
* 1.Map<String, String> map = Collections.synchronizedMap(new HashMap<>());
* 2.Map<String, String> map = new ConcurrentHashMap<>();
*/
Map<String, String> map = new ConcurrentHashMap<>();
for (int i = 0; i < 30; i++) {
new Thread(() -> {
map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0, 5));
System.out.println(map);
}, String.valueOf(i)).start();
}
}
}
- 有返回值
- 可以抛出异常
- 方法不同,run()/call()
代码测试
package com.godfrey.callable;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
/**
* description : Callable测试
*
* @author godfrey
* @since 2020-05-15
*/
public class CallableTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//new Thread(new Runnable).start();
//new Thread(new FutureTask<V>()).start();
//new Thread(new FutureTask<V>(Callable)).start();
MyThread thread = new MyThread();
FutureTask<Integer> futureTask = new FutureTask<Integer>(thread);//适配类
new Thread(futureTask, "A").start();
new Thread(futureTask, "B").start();//结果会被缓存,提高效率,最后打印只有一份
Integer integer = futureTask.get();//获取Callable的返回结果(get方法可能会产生阻塞【大数据等待返回结果慢】!把它放到最会,或者用异步通信)
System.out.println(integer);
}
}
class MyThread implements Callable<Integer> {
@Override
public Integer call() {
System.out.println("call()");
return 1024;
}
}
细节:
- 有缓存
- get(),结果可能会等待,会阻塞
package com.godfrey.add;
import java.util.concurrent.CountDownLatch;
/**
* description : 减法计数器
*
* @author godfrey
* @since 2020-05-15
*/
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
//总数是6
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 0; i < 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "\tGo Out");
countDownLatch.countDown();//-1
}, String.valueOf(i)).start();
}
countDownLatch.await();//等待计数器归零,然后再向下执行
System.out.println("Close Door");
}
}
原理:
countDownLatch.countDown()
//数量-1
countDownLatch.await()
//等待计数器归零,然后再向下执行
每次有线程调用countDown()数量-1 , 假设计数器变为0 , countDownLatch.await()就会被唤醒,继续执行!
加法计数器
package com.godfrey.add;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
/**
* description : 加法计数器
*
* @author godfrey
* @since 2020-05-15
*/
public class CyclicBarrierDemo {
public static void main(String[] args) {
/**
* 集齐七颗龙珠召唤神龙
* 集齐龙珠的线程
*/
CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {
System.out.println("召唤神龙成功");
});
for (int i = 0; i < 7; i++) {
final int temp = i;//lambda操作不到i
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "收集" + temp + "个龙珠");
try {
cyclicBarrier.await();//等待
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}, String.valueOf(i)).start();
}
}
}
Semaphore:信号量
抢车位!
package com.godfrey.add;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
/**
* description : 信号量
*
* @author godfrey
* @since 2020-05-15
*/
public class SemaphoreDemo {
public static void main(String[] args) {
//线程数量:停车位! 限流!
Semaphore semaphore = new Semaphore(3);
for (int i = 0; i < 6; i++) {
new Thread(() -> {
//acquire() 得到
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "抢到车位");
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "离开车位");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
//release() 释放
semaphore.release();
}
}).start();
}
}
}
原理:
semaphore.acquire()
获得,假设如果已经满了, 等待,等待被释放为止!
semaphore.release()
释放,会将当前的信号量释放+ 1 ,然后喚醒等待的线程!
作用:
- 多个共享资源互斥的使用!
- 并发限流,控制最大的线程数!
ReadWriteLock
package com.godfrey.rw;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* description : 读写锁
* 独占锁(写锁) 一次只能被一个线程占有
* 共享锁(读锁) 多个线程可以同时占有
* ReadWriteLock
* 读-读 可以共存!
* 读-写 不能共存!
* 写-写 不能共存!
*
* @author godfrey
* @since 2020-05-15
*/
public class ReadWriteLockDemo {
public static void main(String[] args) {
MyCacheLock myCache = new MyCacheLock();
//写入
for (int i = 0; i < 10; i++) {
final int temp = i;
new Thread(() -> {
myCache.put(temp + "", temp + "");
}, String.valueOf(i)).start();
}
//读取
for (int i = 0; i < 10; i++) {
final int temp = i;
new Thread(() -> {
myCache.get(temp + "");
}, String.valueOf(i)).start();
}
}
}
//加锁的
class MyCacheLock {
private volatile Map<String, Object> map = new HashMap<>();
//读写锁,更加细粒度的控制
private ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
// 存,写入的时候,只希望同时只有一个线程写
public void put(String key, Object value) {
readWriteLock.writeLock().lock();
try {
System.out.println(Thread.currentThread().getName() + "写入" + key);
map.put(key, value);
System.out.println(Thread.currentThread().getName() + "写入OK");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.writeLock().unlock();
}
}
// 取,读,所有人都可以
public void get(String key) {
readWriteLock.readLock().lock();
try {
System.out.println(Thread.currentThread().getName() + "读入" + key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName() + "读入OK");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.readLock().unlock();
}
}
}
/**
* 自定义缓存
*/
class MyCache {
private volatile Map<String, Object> map = new HashMap<>();
//存,写
public void put(String key, Object value) {
System.out.println(Thread.currentThread().getName() + "写入" + key);
map.put(key, value);
System.out.println(Thread.currentThread().getName() + "写入OK");
}
//取,读
public void get(String key) {
System.out.println(Thread.currentThread().getName() + "读入" + key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName() + "读入OK");
}
}
阻塞队列:
什么情况下我们会使用 阻塞队列:多线程并发处理,线程池! 学会使用队列 添加、移除 四组API
方式 | 抛出异常 | 有返回值,不抛出异常 | 阻塞 等待 | 超时 |
---|---|---|---|---|
添加 | add | offer | put | offer |
移除 | remove | poll | take | poll |
判断队列的首部 | element | peek | - | - |
/**
* 抛出异常
*/
public static void test1() {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.add("a"));
System.out.println(blockingQueue.add("b"));
System.out.println(blockingQueue.add("c"));
//ava.lang.IllegalStateException: Queue full 抛出异常!队列已满
//System.out.println(blockingQueue.add("d"));
System.out.println(blockingQueue.element());//查看队首元素是谁
System.out.println("===================");
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
System.out.println(blockingQueue.remove());
//java.lang.IllegalStateException: Queue full 抛出异常!队列为空
//System.out.println(blockingQueue.remove());
}
/**
* 有返回值,没有异常
*/
public static void test2() {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(blockingQueue.offer("a"));
System.out.println(blockingQueue.offer("b"));
System.out.println(blockingQueue.offer("c"));
//System.out.println(blockingQueue.offer("d"));// false 不抛出异常!
System.out.println(blockingQueue.peek());//查看队首元素是谁
System.out.println("===================");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
//System.out.println(blockingQueue.remove());// null 不抛出异常!
}
/**
* 等待,阻塞(一直阻塞)
*/
public static void test3() throws InterruptedException {
// 队列的大小
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
// 一直阻塞
blockingQueue.put("a");
blockingQueue.put("b");
blockingQueue.put("c");
// blockingQueue.put("d"); // 队列没有位置了,一直阻塞
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take());
System.out.println(blockingQueue.take()); // 没有这个元素,一直阻塞
}
/**
* 等待,阻塞(等待超市)
*/
public static void test4() throws InterruptedException {
ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue<>(3);
blockingQueue.offer("a");
blockingQueue.offer("b");
blockingQueue.offer("c");
// blockingQueue.offer("d",2,TimeUnit.SECONDS); // 等待超过2秒就退出
System.out.println("===============");
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
System.out.println(blockingQueue.poll());
blockingQueue.poll(2, TimeUnit.SECONDS); // 等待超过2秒就退出
}
SynchronousQueue 同步队列
没有容量, 进去一个元素,必须等待取出来之后,才能再往里面放一个元素! put、take
package com.godfrey.bq;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;
/**
* description :
*
* @author godfrey
* @since 2020-05-15
*/
/**
* 同步队列
* 和其他的BlockingQueue 不一样, SynchronousQueue 不存储元素
* put了一个元素,必须从里面先take取出来,否则不能在put进去值!
*/
public class SynchronousQueueDemo {
public static void main(String[] args) {
BlockingQueue<String> blockingQueue = new SynchronousQueue<>(); // 同步队列
new Thread(() -> {
try {
blockingQueue.put("1");
System.out.println(Thread.currentThread().getName() + " put 1");
blockingQueue.put("2");
System.out.println(Thread.currentThread().getName() + " put 2");
blockingQueue.put("3");
System.out.println(Thread.currentThread().getName() + " put 3");
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "T1").start();
new Thread(() -> {
try {
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "=>" + blockingQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "=>" + blockingQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "=>" + blockingQueue.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "T2").start();
}
}
线程池:三大方法、7大参数、4种拒绝策略
池话技术
程序的运行,本质:占用系统的资源! 优化资源的使用!=>池化技术 线程池、连接池、内存池、对象池///..... 创建、销毁。十分浪费资源 池化技术:事先准备好一些资源,有人要用,就来我这里拿,用完之后还给我
线程池的好处:
- 降低资源的消耗
- 提高响应的速度
- 方便管理
==线程复用、可以控制最大并发数、管理线程==
三大方法
package com.godfrey.pool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* description : Executors 工具类、3大方法
*
* @author godfrey
* @since 2020-05-15
*/
public class Demo01 {
public static void main(String[] args) {
ExecutorService threadPool = Executors.newSingleThreadExecutor();// 单个线程
//ExecutorService threadPool = Executors.newFixedThreadPool(5);// 创建一个固定的线程池的大小
//ExecutorService threadPool = Executors.newCachedThreadPool();// 可伸缩的,遇强则强,遇弱则弱
try {
for (int i = 0; i < 100; i++) {
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "\tOK");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
七大参数
源码分析:
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
//本质ThreadPoolExecutor()
public ThreadPoolExecutor(int corePoolSize, // 核心线程池大小
int maximumPoolSize, // 最大核心线程池大小
long keepAliveTime, // 超时了没有人调用就会释放
TimeUnit unit, // 超时单位
BlockingQueue<Runnable> workQueue, // 阻塞队列
ThreadFactory threadFactory, // 线程工厂:创建线程的,一般不用动
RejectedExecutionHandler handler // 拒绝策略) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
手写一个线程池
package com.godfrey.pool;
import java.util.concurrent.*;
/**
* description : 七大参数与四种拒绝策略
* 四种拒绝策略:
* AbortPolicy(默认):队列满了,还有任务进来,不处理这个任务的,直接抛出 RejectedExecution异常!
* CallerRunsPolicy:哪来的回哪里!
* DiscardOldestPolicy:队列满了,抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交
* DiscardPolicy():队列满了,直接丢弃任务,不予任何处理也不抛出异常.如果允许任务丢失,这是最好的拒绝策略!
*
* @author godfrey
* @since 2020-05-15
*/
public class Demo02 {
public static void main(String[] args) {
ExecutorService threadPool = new ThreadPoolExecutor(
//模拟银行业务办理
2, //常驻核心线程数 办理业务窗口初始数量
5, //线程池能够容纳同时执行的最大线程数,此值大于等于1, 办理业务窗口最大数量
3, //多余的空闲线程存活时间,当空间时间达到keepAliveTime值时,多余的线程会被销毁直到只剩下corePoolSize个线程为止 释放后窗口数量会变为常驻核心数
TimeUnit.SECONDS, //超时单位
new LinkedBlockingDeque<>(3), //任务队列,被提交但尚未被执行的任务. 候客区座位数量
Executors.defaultThreadFactory(), //线程工厂:创建线程的,一般不用动
new ThreadPoolExecutor.DiscardOldestPolicy()); //拒绝策略,表示当线程队列满了并且工作线程大于等于线程池的最大显示 数(maxnumPoolSize)时如何来拒绝
try {
for (int i = 0; i < 10; i++) {
threadPool.execute(() -> {
System.out.println(Thread.currentThread().getName() + "\tOK");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
四种拒绝策略
- AbortPolicy(默认):队列满了,还有任务进来,不处理这个任务的,直接抛出 RejectedExecution异常
- CallerRunsPolicy:哪来的回哪里!
- DiscardOldestPolicy:队列满了,抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交
- DiscardPolicy():队列满了,直接丢弃任务,不予任何处理也不抛出异常.如果允许任务丢失,这是最好的拒绝策略!
小结和拓展
池的最大的大小如何去设置!
获取CPU核数System.out.println(Runtime.getRuntime().availableProcessors())
了解:用来(调优)
- CPU密集型:CPU核数+1
- IO密集型:
- CPU核数*2
- CPU核数/1.0-阻塞系数 阻塞系数在0.8~0.9之间
新时代的程序员:lambda表达式、链式编程、函数式接口、Stream流式计算
函数式接口:只有一个方法的接口
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
代码测试
函数式接口
package com.godfrey.function;
import java.util.function.Function;
/**
* description : Function 函数式接口,有一个输入参数,有一个输出
* 只要是 函数型接口 可以 用 lambda表达式简化
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo01 {
public static void main(String[] args) {
//Function function = new Function<String, String>(){
// @Override
// public String apply(String o) {
// return o;
// }
//};
Function function = str->{return str;};
System.out.println(function.apply("123"));
}
}
断定型接口:有一个输入参数,返回值只能是 布尔值!
package com.godfrey.function;
import java.util.function.Predicate;
/**
* description : 断定型接口,有一个输入参数,返回值只能是布尔值!
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo02 {
public static void main(String[] args) {
//判断字符串是否为空
//Predicate<String> predicate = new Predicate<String>() {
// @Override
// public boolean test(String str) {
// return str.isEmpty();
// }
//};
Predicate<String> predicate = str -> { return str.isEmpty(); };
System.out.println(predicate.test(""));
}
}
Consumer 消费型接口
package com.godfrey.function;
import java.util.function.Consumer;
/**
* description : Consumer 消费型接口,只有输入,没有返回值
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo03 {
public static void main(String[] args) {
//Consumer<String> consumer = new Consumer<String>() {
// @Override
// public void accept(String str) {
// System.out.println(str);
// }
//};
Consumer<String> consumer = str -> System.out.println(str);
consumer.accept("godfrey");
}
}
Supplier 供给型接口
package com.godfrey.function;
import java.util.function.Supplier;
/**
* description : Supplier 供给型接口,没有参数,只有返回值
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo04 {
public static void main(String[] args) {
//Supplier supplier = new Supplier<Integer>() {
// @Override
// public Integer get() {
// System.out.println("get()");
// return 1024;
// }
//};
Supplier supplier = () -> { return 1024;};
System.out.println(supplier.get());
}
}
什么是Stream流式计算
大数据:存储 + 计算 集合、MySQL 本质就是存储东西的; 计算都应该交给流来操作!
package com.godfrey.stream;
import java.util.Arrays;
import java.util.List;
/**
* description :一分钟内完成此题,只能用一行代码实现!
* 现在有5个用户!筛选:
* 1、ID 必须是偶数
* 2、年龄必须大于23岁
* 3、用户名转为大写字母
* 4、用户名字母倒着排序
* 5、只输出一个用户!
*
* @author godfrey
* @since 2020-05-16
*/
public class Test {
public static void main(String[] args) {
User u1 = new User(1, "a", 21);
User u2 = new User(2, "b", 22);
User u3 = new User(3, "c", 23);
User u4 = new User(4, "d", 24);
User u5 = new User(6, "e", 25);
//集合就算存储
List<User> list = Arrays.asList(u1, u2, u3, u4, u5);
//计算交给Stream流
list.stream()
.filter(u -> { return u.getId() % 2 == 0; })
.filter(u->{return u.getAge()>23;})
.map(u->{return u.getName().toUpperCase();})
.sorted((uu1,uu2)->{return uu2.compareTo(uu1);})
.limit(1)
.forEach(System.out::println);
}
}
什么是 ForkJoin
ForkJoin 在 JDK 1.7 , 并行执行任务!提高效率。大数据量! 大数据:Map Reduce (把大任务拆分为小任务)
ForkJoin 特点:工作窃取
这个里面维护的都是双端队列
Forkjoin
package com.godfrey.forkjoin;
import java.util.concurrent.RecursiveTask;
/**
* 求和计算的任务!
* 如何使用 forkjoin
* 1、forkjoinPool 通过它来执行
* 2、计算任务 forkjoinPool.execute(ForkJoinTask task)
* 3、 计算类要继承 ForkJoinTask
*
* @author godfrey
* @since 2020-05-16
*/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;
private Long end;
//临界值
private Long temp = 10000L;
public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
}
//计算方法
@Override
protected Long compute() {
if ((end - start) > temp) {
Long sum = 0L;
for (Long i = start; i < end; i++) {
sum += i;
}
return sum;
} else { // forkjoin 递归
Long middle = (start + end) / 2;//中间值
ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
task1.fork(); // 拆分任务,把任务压入线程队列
ForkJoinDemo task2 = new ForkJoinDemo(middle + 1, end);
task2.fork(); // 拆分任务,把任务压入线程队列
return task1.join() + task2.join();
}
}
}
测试:
package com.godfrey.forkjoin;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
/**
* description : 效率测试
*
* @author godfrey
* @since 2020-05-16
*/
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1(); //sum=499999999500000000 时间:7192
//test2(); //sum=499999999500000000 时间:6949
test3(); //sum=500000000500000000 时间:526
}
// 普通程序员
public static void test1() {
Long sum = 0L;
Long start = System.currentTimeMillis();
for (Long i = 0L; i < 10_0000_0000L; i++) {
sum += i;
}
Long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
//ForkJoin
public static void test2() throws ExecutionException, InterruptedException {
Long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(task);
Long sum = submit.get();
Long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
//Stream并行流
public static void test3() {
Long start = System.currentTimeMillis();
Long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
Long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
}
Future 设计的初衷: 对将来的某个事件的结果进行建模
package com.godfrey.future;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
/**
* description : 异步回调
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo01 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1();
test02();
}
// 没有返回值的 runAsync 异步回调
public static void test1() throws InterruptedException, ExecutionException {
CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(() -> {
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "runAsync=>Void");
});
System.out.println("1111");
completableFuture.get(); // 获取阻塞执行结果
}
// 有返回值的 supplyAsync 异步回调
// ajax,成功和失败的回调
// 返回的是错误信息;
public static void test02() throws InterruptedException, ExecutionException {
CompletableFuture<Integer> completableFuture =
CompletableFuture.supplyAsync(() -> {
System.out.println(Thread.currentThread().getName() + "supplyAsync=>Integer");
int i = 10 / 0;
return 1024;
});
System.out.println(completableFuture.whenComplete((t, u) -> {
System.out.println("t=>" + t); // 正常的返回结果
System.out.println("u=>" + u); // 错误信息:java.util.concurrent.CompletionException:java.lang.ArithmeticException: / by zero
}).exceptionally((e) -> {
System.out.println(e.getMessage());
return 233; // 可以获取到错误的返回结果
}).get());
/**
* succee Code 200
* error Code 404 500
*/}
}
请你谈谈你对 Volatile 的理解
Volatile 是 Java 虚拟机提供轻量级的同步机制
- 保证可见性
- ==不保证原子性==
- 禁止指令重排
什么是JMM
JMM : Java内存模型,不存在的东西,概念!约定!
关于JMM的一些同步的约定:
- 线程解锁前,必须把共享变量==立刻==刷回主存
- 线程加锁前,必须读取主存中的最新值到工作内存中!
- 加锁和解锁是同一把锁
线程 工作内存 、主内存
8种操作:
内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可再分的(对于double和long类 型的变量来说,load、store、read和write操作在某些平台上允许例外)
- lock (锁定):作用于主内存的变量,把一个变量标识为线程独占状态
- unlock (解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
- read (读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用
- load (载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中
- use (使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令
- assign (赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中
- store (存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用
- write (写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中
JMM对这八种指令的使用,制定了如下规则:
- 不允许read和load、store和write操作之一单独出现。即使用了read必须load,使用了store必须write
- 不允许线程丢弃他最近的assign操作,即工作变量的数据改变了之后,必须告知主存
- 不允许一个线程将没有assign的数据从工作内存同步回主内存
- 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是怼变量 实施use、store操作之前,必须经过assign和load操作
- 一个变量同一时间只有一个线程能对其进行lock。多次lock后,必须执行相同次数的unlock才能解锁
- 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值,在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值
- 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量
- 对一个变量进行unlock操作之前,必须把此变量同步回主内存
1.保证可见性
package com.godfrey.tvolatile;
import java.util.concurrent.TimeUnit;
/**
* description : volatile 保证可见性
*
* @author godfrey
* @since 2020-05-16
*/
public class JMMDemo {
// 不加 volatile 程序就会死循环!
// 加 volatile 可以保证可见性
private volatile static int num = 0;
public static void main(String[] args) { // main
new Thread(() -> { // 线程 1 对主内存的变化不知道的
while (num == 0) {
}
}).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
num = 1;
System.out.println(num);
}
}
2.不保证原子性
原子性 : 不可分割 线程A在执行任务的时候,不能被打扰的,也不能被分割。要么同时成功,要么同时失败
package com.godfrey.tvolatile;
/**
* description : volatile 不保证原子性
*
* @author godfrey
* @since 2020-05-16
*/
public class JMMDemo {
private volatile static int num = 0;
public static void add() {
num++;
}
public static void main(String[] args) {
//理论上num结果应该为 2 万
for (int i = 0; i < 20; i++) {
new Thread(() -> {
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
while (Thread.activeCount() > 2) { // main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
如果不加 lock 和 synchronized ,怎么样保证原子性
使用原子类,解决原子性问题
package com.godfrey.tvolatile;
import java.util.concurrent.atomic.AtomicInteger;
/**
* description : volatile 不保证原子性
*
* @author godfrey
* @since 2020-05-16
*/
public class VDemo02 {
// volatile 不保证原子性
// 原子类的 Integer
private volatile static AtomicInteger num = new AtomicInteger();
public static void add() {
// num++; // 不是一个原子性操作
num.getAndIncrement(); // AtomicInteger + 1 方法, CAS
}
public static void main(String[] args) {
//理论上num结果应该为 2 万
for (int i = 0; i < 20; i++) {
new Thread(() -> {
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
while (Thread.activeCount() > 2) { // main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
这些类的底层都直接和操作系统挂钩!在内存中修改值!Unsafe类是一个很特殊的存在!
指令重排
什么是 指令重排:你写的程序,计算机并不是按照你写的那样去执行的 源代码-->编译器优化的重排--> 指令并行也可能会重排--> 内存系统也会重排---> 执行
==处理器在进行指令重排的时候,考虑:数据之间的依赖性!==
int x = 1; // 1
int y = 2; // 2
x = x + 5; // 3
y = x * x; // 4
我们所期望的:1234 但是可能执行的时候回变成 2134 1324
可不可能是 4123!
可能造成影响的结果: a b x y 这四个值默认都是 0;
线程A | 线程B |
---|---|
x=a | y=b |
b=1 | a=2 |
正常的结果: x = 0;y = 0;但是可能由于指令重排
线程A | 线程B |
---|---|
b=1 | a=2 |
x=a | y=b |
指令重排导致的诡异结果: x = 2;y = 1;
禁止指令重排
volatile可以禁止指令重排:
内存屏障。CPU指令。作用:
- 保证特定的操作的执行顺序!
- 可以保证某些变量的内存可见性 (利用这些特性volatile实现了可见性)
Volatile 是可以保持 可见性。不能保证原子性,由于内存屏障,可以保证避免指令重排的现象产生!
饿汉式 DCL懒汉式,深究!
饿汉式
package com.godfrey.single;
/**
* description : 饿汉式单例
*
* @author godfrey
* @since 2020-05-16
*/
public class Hungry {
private Hungry() {
}
public final static Hungry HUNGRY = new Hungry();
public static Hungry getInstance() {
return HUNGRY;
}
}
静态内部类
package com.godfrey.single;
/**
* description : 静态内部类单例
*
* @author godfrey
* @since 2020-05-16
*/
public class Holder {
private Holder() {
}
private static class InnerClass {
private final static Holder HOLDER = new Holder();
}
public static Holder getInstance() {
return InnerClass.HOLDER;
}
}
单例不安全,反射
枚举
package com.godfrey.single;
/**
* description : 枚举单例
*
* @author godfrey
* @since 2020-05-16
*/
public enum EnumSingle {
INSTANCE;
}
通过class文件反编译得到Java文件:
// Decompiled by Jad v1.5.8g. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html
// Decompiler options: packimports(3)
// Source File Name: EnumSingle.java
package com.godfrey.single;
import java.io.PrintStream;
public final class EnumSingle extends Enum
{
public static EnumSingle[] values()
{
return (EnumSingle[])$VALUES.clone();
}
public static EnumSingle valueOf(String name)
{
return (EnumSingle)Enum.valueOf(com/godfrey/single/EnumSingle, name);
}
private EnumSingle(String s, int i)
{
super(s, i);
}
public static void main(String args[])
{
System.out.println(INSTANCE);
}
public static final EnumSingle INSTANCE;
private static final EnumSingle $VALUES[];
static
{
INSTANCE = new EnumSingle("INSTANCE", 0);
$VALUES = (new EnumSingle[] {
INSTANCE
});
}
}
可以发现枚举的单例构造器是==有参==的
什么是 CAS
package com.godfrey.cas;
import java.util.concurrent.atomic.AtomicInteger;
/**
* description : CAS compareAndSet : 比较并交换
*
* @author godfrey
* @since 2020-05-16
*/
public class CASDemo {
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望、更新
// public final boolean compareAndSet(int expectedValue, int newValue)
// 如果我期望的值达到了,那么就更新,否则,就不更新, CAS 是CPU的并发原语!
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
atomicInteger.getAndIncrement();
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
}
}
Unsafe 类
CAS : 比较当前工作内存中的值和主内存中的值,如果这个值是期望的,那么则执行操作!如果不是就一直循环! 缺点:
- 循环会耗时
- 一次性只能保证一个共享变量的原子性
- ABA问题
CAS : ABA 问题(狸猫换太子)
package com.godfrey.cas;
import java.util.concurrent.atomic.AtomicInteger;
/**
* description : CAS问题:ABA(狸猫换太子)
*
* @author godfrey
* @since 2020-05-16
*/
public class ABADemo {
// CAS compareAndSet : 比较并交换!
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望、更新
// public final boolean compareAndSet(int expect, int update)
// 如果我期望的值达到了,那么就更新,否则,就不更新, CAS 是CPU的并发原语!
// ============== 捣乱的线程 ==================
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2021, 2020));
System.out.println(atomicInteger.get());
// ============== 期望的线程 ==================
System.out.println(atomicInteger.compareAndSet(2020, 6666));
System.out.println(atomicInteger.get());
}
}
解决ABA 问题,引入原子引用! 对应的思想:乐观锁
带版本号 的原子操作!
package com.godfrey.cas;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicStampedReference;
/**
* description : 原子引用解决ABA问题
*
* @author godfrey
* @since 2020-05-16
*/
public class AtomicStampedReferenceDemo {
//AtomicStampedReference 注意,如果泛型是一个包装类,注意对象的引用问题
static AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference<>(1, 1);
public static void main(String[] args) {
new Thread(() -> {
int stamp = atomicStampedReference.getStamp(); // 获得版本号
System.out.println("a1=>" + stamp);
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
atomicStampedReference.compareAndSet(1, 2, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1);
System.out.println("a2=>" + atomicStampedReference.getStamp());
System.out.println(atomicStampedReference.compareAndSet(2, 1, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
System.out.println("a3=>" + atomicStampedReference.getStamp());
}, "a").start();
// 乐观锁的原理相同!
new Thread(() -> {
int stamp = atomicStampedReference.getStamp(); // 获得版本号
System.out.println("b1=>" + stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(atomicStampedReference.compareAndSet(1, 6, stamp, stamp + 1));
System.out.println("b2=>" + atomicStampedReference.getStamp());
}, "b").start();
}
}
注意: Integer 使用了对象缓存机制,默认范围是 -128 ~ 127 ,推荐使用静态工厂方法 valueOf 获取对象实例,而不是 new,因为 valueOf 使用缓存,而 new 一定会创建新的对象分配新的内存空间;
公平锁: 非常公平, 不能够插队,必须先来后到! 非公平锁:非常不公平,可以插队 (默认都是非公平)
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
可重入锁(递归锁)
Synchronized
package com.godfrey.lock;
/**
* description : Synchronized
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo01 {
public static void main(String[] args) {
Phone phone = new Phone();
new Thread(() -> {
phone.sms();
}, "A").start();
new Thread(() -> {
phone.sms();
}, "B").start();
}
}
class Phone {
public synchronized void sms() {
System.out.println(Thread.currentThread().getName() + "sms");
call(); // 这里也有锁
}
public synchronized void call() {
System.out.println(Thread.currentThread().getName() + "call");
}
}
Lock 版
package com.godfrey.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* description :
*
* @author godfrey
* @since 2020-05-16
*/
public class Demo02 {
public static void main(String[] args) {
Phone2 phone = new Phone2();
new Thread(() -> {
phone.sms();
}, "A").start();
new Thread(() -> {
phone.sms();
}, "B").start();
}
}
class Phone2 {
Lock lock = new ReentrantLock();
public void sms() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + "sms");
call(); // 这里也有锁
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void call() {
lock.lock();
try {
System.out.println(Thread.currentThread().getName() + "call");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
spinlock
我们来自定义一个锁测试
package com.godfrey.lock;
import java.util.concurrent.atomic.AtomicReference;
/**
* description : 自旋锁
*
* @author godfrey
* @since 2020-05-16
*/
public class SpinlockDemo {
AtomicReference<Thread> atomicReference = new AtomicReference<>();
// 加锁
public void myLock() {
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "==> mylock");
// 自旋锁
while (!atomicReference.compareAndSet(null, thread)) {
}
}
// 解锁
public void myUnLock() {
Thread thread = Thread.currentThread();
System.out.println(Thread.currentThread().getName() + "==> myUnlock");
atomicReference.compareAndSet(thread, null);
}
}
测试
package com.godfrey.lock;
import java.util.concurrent.TimeUnit;
/**
* description : 测试自定义CAS实现的自旋锁
*
* @author godfrey
* @since 2020-05-16
*/
public class TestSpinLock {
public static void main(String[] args) throws InterruptedException {
// 底层使用的自旋锁CAS
SpinlockDemo lock = new SpinlockDemo();
new Thread(() -> {
lock.myLock();
try {
TimeUnit.SECONDS.sleep(5);
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
}, "T1").start();
TimeUnit.SECONDS.sleep(1);
new Thread(() -> {
lock.myLock();
try {
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.myUnLock();
}
}, "T2").start();
}
}
死锁是什么
死锁测试,怎么排除死锁:
package com.godfrey.lock;
import java.util.concurrent.TimeUnit;
/**
* description : 死锁Demo
*
* @author godfrey
* @since 2020-05-16
*/
public class DeadLockDemo {
public static void main(String[] args) {
String lockA = "lockA";
String lockB = "lockB";
new Thread(new MyThread(lockA, lockB), "T1").start();
new Thread(new MyThread(lockB, lockA), "T2").start();
}
}
class MyThread implements Runnable {
private String lockA;
private String lockB;
public MyThread(String lockA, String lockB) {
this.lockA = lockA;
this.lockB = lockB;
}
@Override
public void run() {
synchronized (lockA) {
System.out.println(Thread.currentThread().getName() +
"lock:" + lockA + "=>get" + lockB);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockB) {
System.out.println(Thread.currentThread().getName() +
"lock:" + lockB + "=>get" + lockA);
}
}
}
}
解决问题
- 使用
jps -l
定位进程号
- 使用
jstack 进程号
找到死锁问题