forked from mpquant/Ashare
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathashare.py
333 lines (243 loc) · 11.4 KB
/
ashare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import json, requests
from datetime import datetime
import pandas as pd
from loguru import logger
from typing import Optional
from abc import ABC, abstractmethod
class ApiServerBase(ABC):
# @abstractmethod
# def query_daily_prices(self):
# pass
# @abstractmethod
# def query_hourly_prices(self):
# pass
# @abstractmethod
# def query_minute_prices(self):
# pass
pass
# TODO: 'Xday','Xmonth', 'Xminute' # 'daily'(等同于'1d'), 'minute'(等同于'1m')
class Tencent(ApiServerBase):
def __init__(self) -> None:
pass
def query_prices(self, security: str, frequency="day", end_date=datetime.now(), count=10) -> pd.DataFrame:
'''
腾讯日 周 月线。
frequency in ["day", "week", "month"]
'''
if frequency not in ["day", "week", "month"]:
raise RuntimeError(f"frequency error : {frequency}")
if not isinstance(end_date, datetime):
raise TypeError(type(end_date))
# TODO: check security
end_date_str = end_date.strftime(r'%Y-%m-%d')
freq = frequency
URL = f'http://web.ifzq.gtimg.cn/appstock/app/fqkline/get?param={security},{freq},,{end_date_str},{count},qfq' # TODO: qfq 前复权
content = json.loads(requests.get(URL).content)
if content["msg"] != "":
raise RuntimeError(content["msg"])
'''
{
"code": 0,
"msg": "",
"data": {
"sh605577": {
"qfqday": [
[
"2024-01-25",
"27.590",
"30.800",
"30.800",
"27.120",
"285458.000"
]
],
'''
# 指数是 freq 其他的则是 qfq+freq
day = "day" if "qfq" + freq not in content["data"][security] else "qfq" + freq
data = content["data"][security][day]
'''
['2022-06-24', '11.510', '11.370', '11.530', '11.340', '24319.000', {'nd': '2021', 'fh_sh': '1', 'djr': '2022-06-23', 'cqr': '2022-06-24', 'FHcontent': '10派1元'}]
['2023-07-05', '11.270', '11.220', '11.430', '11.200', '20268.000', {'nd': '2022', 'fh_sh': '1.1', 'djr': '2023-07-04', 'cqr': '2023-07-05', 'FHcontent': '10派1.1元'}]
'''
# NOTE: data会格外加入一栏除权信息 需要清洗
for i, d in enumerate(data):
data[i] = d[:6]
columns = ['time','open','close','high','low','volume']
df = pd.DataFrame(
data,
columns=columns,
)
# 除了time之外都进行浮点化
df[columns[1:]] = df[columns[1:]].astype("float")
df.loc[:, "time"] = pd.to_datetime(df["time"])
df.set_index('time', inplace=True) # Whether to modify the DataFrame rather than creating a new one.
# df.index.name = '' TODO:?
return df
def query_minute_prices(self, security: str, frequency="1minute", end_date=datetime.now(), count=10) -> pd.DataFrame:
'''
腾讯分钟线.
frequency in [1minute, 5minute, 15minute ...]
'''
if not frequency.endswith("minute"):
raise RuntimeError(f"frequency error :{frequency}")
if not frequency[0].isdigit():
raise RuntimeError(f"frequency error {frequency}")
if not isinstance(end_date, datetime):
raise TypeError(type(end_date))
# 提取前面的数字
freq = int(''.join(c for c in frequency if c.isdigit()))
URL = f'http://ifzq.gtimg.cn/appstock/app/kline/mkline?param={security},m{freq},,{count}'
content = json.loads(requests.get(URL).content)
if content.get("code") and content["code"] == -1:
raise RuntimeError(f"api error : {content['msg']}")
data = content["data"][security]["m" + str(freq)]
columns = ['time','open','close','high','low','volume','n1','n2']
df = pd.DataFrame(
data,
columns=columns
)[columns[:-2]]
df[columns[1:-2]] = df[columns[1:-2]].astype("float")
df.loc[:, "time"] = pd.to_datetime(df["time"])
df.set_index(['time'], inplace=True)
return df
class Sina(ApiServerBase):
# sina新浪全周期获取函数,分钟线 5m,15m,30m,60m
def query_prices(self, security: str, frequency="5m", end_date=datetime.now(), count=10) -> pd.DataFrame:
'''
frequency必须是5的倍数
'''
if not frequency.endswith("m"):
raise RuntimeError(f"frequency error :{frequency}")
if not frequency[0].isdigit():
raise RuntimeError(f"frequency error {frequency}")
if not isinstance(end_date, datetime):
raise TypeError(type(end_date))
# 提取前面的数字
mfreq = int(''.join(c for c in frequency if c.isdigit()))
if mfreq % 5 != 0:
raise RuntimeError(f"frequency must be multiple of five but found :{frequency}")
URL = f'http://money.finance.sina.com.cn/quotes_service/api/json_v2.php/CN_MarketData.getKLineData?symbol={security}&scale={mfreq}&ma=5&datalen={count}'
content = json.loads(requests.get(URL).content)
'''
这边其实还有两列数据 暂时用不上
"ma_price5": 29.488,
"ma_volume5": 331320
'''
data = content
columns = ['day','open','close','high','low','volume']
df = pd.DataFrame(
data,
columns=columns
)
df[columns[1:]] = df[columns[1:]].astype("float")
df.loc[:, "day"] = pd.to_datetime(df["day"])
df.set_index(['day'], inplace=True)
return df
# TODO: decorator check security
def security_checker(func):
def wrapper(self, security: str, *args, **kwargs):
# 检查 security 是否符合要求,这里假设 security 必须是字符串类型
if not isinstance(security, str):
raise TypeError("The 'security' parameter must be a string.")
while True:
if any(security.endswith(end) for end in [".XSHG", ".XSHE"]):
break
if any(security.startswith(start) for start in ["sh", "sz"]):
break
raise RuntimeError(f"security format error : {security}")
#证券代码编码兼容处理
code = security.replace('.XSHG', '').replace('.XSHE', '')
code = 'sh' + code if ('XSHG' in security) else 'sz' + code if ('XSHE' in security) else security
# 调用原始函数
result = func(self, code, *args, **kwargs)
return result
return wrapper
class Api:
def __init__(self) -> None:
self._tencent = Tencent()
self._sina = Sina()
@security_checker
def query_prices_untilnow(self, security: str, frequency='60minute', count=10) -> pd.DataFrame:
'''
tx支持: 1minute 5minute 15minute... 1day 1week 1month
xl支持: 5minute 15minute... 1day 1week 1month
'''
n = int(''.join(c for c in frequency if c.isdigit()))
freq = ''.join(c for c in frequency if c.isalpha())
if freq not in ["minute", "day", "week", "month"]:
raise RuntimeError(f"frequency error : {frequency}")
if freq == "minute":
try:
return self._tencent.query_minute_prices(security, frequency, count=count)
except Exception as e:
logger.info(f"found exception {e}, try next api")
try:
return self._sina.query_prices(security, frequency=str(n)+"m", count=count)
except Exception as e:
logger.error(f"backup api failed with {e}")
raise e
elif freq in ["day", "week", "month"]:
if n != 1:
raise RuntimeError("only support 1 day/week/month")
try:
return self._tencent.query_prices(security, frequency=freq, count=count)
except Exception as e:
logger.info(f"found exception {e}, try next api")
try:
# 日线1d=240m 周线1w=1200m 1月=7200m
if freq == "1day":
freq = "240m"
elif freq == "1week":
freq = "1200m"
elif freq == "1month":
freq = "7200m"
else:
raise RuntimeError(f"unhandled {freq}")
return self._sina.query_prices(security, frequency=freq, count=count)
except Exception as e:
logger.error(f"backup api failed with {e}")
raise e
else:
raise RuntimeError(f"unhandled freq : {freq}")
@security_checker
def query_data_region(self, security: str, start: datetime, end: datetime) -> pd.DataFrame:
'''
以每日价格查询数据范围. 最大可回查590天
NOTE: 目前仍不完备 可能出现起始时间不在start的问题? 不过这种情况只是假设
'''
if type(start) != datetime or type(end) != datetime:
raise TypeError
assert end.date() <= datetime.now().date()
days = (datetime.now() - start).days + 200
data = self.query_prices_untilnow(security, "1day", count=days)
df = data.query('index >= @start and index <= @end')
if df.index[0] > start:
logger.warning("exceed the limit of API(590 count), adjusted the start time")
return df
@security_checker
def query_data_in_day(self, security: str, day: datetime = datetime.now(), frequency="1minute") -> pd.DataFrame:
'''
查询一天之内的分钟级数据, 如果拿不到则会返回None(API有时间限制)
frequency 必须是1, 5, 15, 30, 60分钟
NOTE: 如果用1分钟数据 通常只能获得当天的 数据有残缺 自行判断吧
'''
if type(day) != datetime:
raise TypeError
if not frequency.endswith("minute"):
raise TypeError
data = self.query_prices_untilnow(
security=security,
frequency=frequency,
count=10000000000 # 尽可能大
)
data = data[data.index.day == day.day]
return data
api = Api()
if __name__ == "__main__":
# print(api.query_prices_untilnow("sh605577", "1minute", count=3))
# print(api.query_prices_untilnow("sh605577", "5minute", count=3))
# print(api.query_prices_untilnow("sh605577", "1day", count=3))
# print(api.query_prices_untilnow("sh605577", "1week", count=3))
# print(api.query_prices_untilnow("sh605577", "1month", count=3))
print(api.query_data_region("sh605577", start=datetime(2022, 3, 9), end=datetime(2023, 5, 8)))
# print(api.query_data_region("sh605577", start=datetime(2021, 3, 9), end=datetime.now()))