-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
95 lines (90 loc) · 2.94 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
from pathlib import Path
import torch
from diffusers import (
StableDiffusionPipeline,
DPMSolverMultistepScheduler,
DDIMScheduler,
)
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
default="",
)
# parser.add_argument("--prompt_path", type=str, default="prompts/prompts.txt")
parser.add_argument(
"--prompt",
type=str,
default="A girl in a school uniform playing an electric guitar.",
)
parser.add_argument(
"--prompt_type",
type=str,
default="neg_emb",
choices=["neg_emb", "neg_prompt", "only_pos"],
)
parser.add_argument(
"--neg_prompt",
type=str,
default="distorted, ugly, blurry, low resolution, low quality, bad, deformed, disgusting, Overexposed, Simple background, Plain background, Grainy, Underexposed, too dark, too bright, too low contrast, too high contrast, Broken, Macabre, artifacts, oversaturated",
)
parser.add_argument(
"--neg_embeddings_path",
type=str,
default="checkpoints/sd1.5_reneg_emb.bin",
)
parser.add_argument(
"--output_path",
type=str,
default="outputs",
)
parser.add_argument("--num_inference_steps", type=int, default=30)
parser.add_argument("--seed", type=int, default=42)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
pipe = StableDiffusionPipeline.from_pretrained(
args.model_path,
safety_checker=None,
)
pipe.scheduler = DDIMScheduler.from_pretrained(
args.model_path, subfolder="scheduler"
)
device = "cuda"
pipe.to(device)
generator = torch.Generator().manual_seed(args.seed)
os.makedirs(args.output_path, exist_ok=True)
if args.prompt_type == "neg_emb":
neg_embeddings = torch.load(args.neg_embeddings_path).to(device)
output = pipe(
args.prompt,
negative_prompt_embeds=neg_embeddings,
num_inference_steps=args.num_inference_steps,
guidance_scale=7.5,
generator=generator,
)
elif args.prompt_type == "neg_prompt":
neg_prompt = args.neg_prompt
output = pipe(
args.prompt,
negative_prompt=neg_prompt,
num_inference_steps=args.num_inference_steps,
guidance_scale=7.5,
generator=generator,
)
elif args.prompt_type == "only_pos":
output = pipe(
args.prompt,
num_inference_steps=args.num_inference_steps,
guidance_scale=7.5,
generator=generator,
)
image = output.images[0]
# TextToImageModel is the model you want to evaluate
file_name = args.prompt.replace(" ", "_")
output_file = Path(args.output_path) / f"{args.prompt_type}_{file_name}.jpg"
image.save(output_file)
print(f"Saved image to {output_file}")