forked from NickBk92/BI_NMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNMF_EM.py
85 lines (76 loc) · 2.59 KB
/
NMF_EM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import scipy.stats
from scipy.io import loadmat,savemat
import matplotlib
import scipy.stats
import os
foldername = "EM_(k3101010)/"
os.mkdir(foldername)
vi = 1024
tau = 50
I = 15
a_tm = 100 * np.ones((vi, I))
b_tm = 0.8* np.ones((vi, I))
a_ve = 0.5 * np.ones((I, tau))
b_ve = 5 * np.ones((I, tau))
T = np.random.gamma(a_tm, b_tm)
V = np.random.gamma(a_ve, b_ve)
faces = np.zeros((vi,tau))
X = loadmat('faces32x400.mat')
for k,v in X.items():
if k == 'faces_new':
for i in range(tau):
for j in range(vi):
faces[j][i] = v[j][i]
# faces = np.transpose(faces)
n=50
# estimate = np.dot(T,V)
sqrt_error_I = np.zeros(n)
entropy_error_I = np.zeros(n)
KL = np.zeros(n)
for itter in range(n):
T_new = T.copy()
# s3 = []
# for i in range(I):
# s3.append(sum(V[i, :]))
for v in range(vi):
for i in range(I):
s2 = 0
for t in range(tau):
s1 = 0
for ip in range(I):
s1 += T[v,ip]*V[ip,t]
s2 = s2 + (faces[v,t]*V[i,t])/s1
s3 = sum(V[i,:])
coef = s2/s3
T_new[v,i] = 0.3*T[v,i]+0.7*T[v,i]*coef
if T_new[v,i] > 255: T_new[v,i] = 125
V_new = V.copy()
for t in range(tau):
for i in range(I):
s2 = 0
for v in range(vi):
s1 = 0
for ip in range(I):
s1 += T[v,ip]*V[ip,t]
s2 += (faces[v,t]*T[v,i])/s1
s3 = sum(T[i,:])
coef = s2/s3
V_new[i,t] = 0.6*V[i,t]+0.4*V[i,t]*coef
T = T_new.copy()
# V = V_new.copy()
print(itter)
TV = np.dot(T, V)
sqrt_error_I[itter] = np.sqrt(np.sqrt(np.sum(np.square(faces - TV))))
print(" sqrt error = " + str(sqrt_error_I[itter]))
entropy_error_I[itter] = np.sum(scipy.stats.entropy(faces, TV))
print(" entropy error = " + str(entropy_error_I[itter]))
for v in range(vi):
for t in range(tau):
KL[itter] = KL[itter] + faces[v][t] * np.log(TV[v][t] / faces[v][t]) - TV[v][t] + faces[v][t]
KL[itter] = - KL[itter]
print(" KL divergance = " + str(KL[itter]))
savemat(foldername + 'EM_sqrt_error_I_' + str(I), {'EM_sqrt_error_I_' + str(I): sqrt_error_I})
savemat(foldername + 'EM_KL_Diverg_I_' + str(I), {'EM_KL_Diverg_I_' + str(I): KL})
savemat(foldername + 'EM_entropy_error_I_' + str(I), {'EM_entropy_error_I_' + str(I): entropy_error_I})
savemat(foldername+"EM_I_"+str(I),{"EM_T":T,"EM_V":V})