-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
42 lines (31 loc) · 1.64 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
import numpy as np
from matryoshka import Matryoshka
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
sentences = ["sentence", "not a sentence"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
matryoshka = Matryoshka(adaptor=False, matryoshka_dim=384)
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
print("Encoded input shape:", encoded_input['input_ids'].shape)
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
matryoshka_output = matryoshka(pooling=False, **encoded_input)
assert torch.allclose(model_output[0], matryoshka_output, atol=1e-6)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(np.dot(sentence_embeddings, sentence_embeddings.T))