-
Notifications
You must be signed in to change notification settings - Fork 23
/
modskew.m
183 lines (147 loc) · 3.78 KB
/
modskew.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
function [chm, snrk] = modskew(ch,sk,p);
% Adjust the sample skewness of a vector/matrix, using gradient projection,
% without affecting its sample mean and variance.
%
% This operation is not an orthogonal projection, but the projection angle is
% near pi/2 when sk is close to the original skewness, which is a realistic
% assumption when doing iterative projections in a pyramid, for example
% (small corrections to the channels' statistics).
%
% [xm, snrk] = modskew(x,sk,p);
% sk: new skweness
% p [OPTIONAL]: mixing proportion between sk0 and sk
% it imposes (1-p)*sk0 + p*sk,
% being sk0 the current skewness.
% DEFAULT: p = 1;
%
% JPM. 2/98, IODV, CSIC
% 4/00, CNS, NYU
Warn = 0; % Set to 1 if you want to see warning messages
if ~exist('p'),
p = 1;
end
N=prod(size(ch)); % number of samples
me=mean2(ch);
ch=ch-me;
for n=2:6,
m(n)=mean2(ch.^n);
end
sd=sqrt(m(2)); % standard deviation
s=m(3)/sd^3; % original skewness
snrk = snr(sk, sk-s);
sk = s*(1-p) + sk*p;
% Define the coefficients of the numerator (A*lam^3+B*lam^2+C*lam+D)
A=m(6)-3*sd*s*m(5)+3*sd^2*(s^2-1)*m(4)+sd^6*(2+3*s^2-s^4);
B=3*(m(5)-2*sd*s*m(4)+sd^5*s^3);
C=3*(m(4)-sd^4*(1+s^2));
D=s*sd^3;
a(7)=A^2;
a(6)=2*A*B;
a(5)=B^2+2*A*C;
a(4)=2*(A*D+B*C);
a(3)=C^2+2*B*D;
a(2)=2*C*D;
a(1)=D^2;
% Define the coefficients of the denominator (A2+B2*lam^2)
A2=sd^2;
B2=m(4)-(1+s^2)*sd^4;
b=zeros(1,7);
b(7)=B2^3;
b(5)=3*A2*B2^2;
b(3)=3*A2^2*B2;
b(1)=A2^3;
if 0, % test
lam = -2:0.02:2;
S = (A*lam.^3+B*lam.^2+C*lam+D)./...
sqrt(b(7)*lam.^6 + b(5)*lam.^4 + b(3)*lam.^2 + b(1));
% grd = ch.^2 - m(2) - sd * s * ch;
% for lam = -1:0.01:1,
% n = lam*100+101;
% chp = ch + lam*grd;
% S2(n) = mean2(chp.^3)/abs(mean2(chp.^2))^(1.5);
% end
lam = -2:0.02:2;
figure(1);plot(lam,S);grid;drawnow
% snr(S2, S-S2)
end % test
% Now I compute its derivative with respect to lambda
d(8) = B*b(7);
d(7) = 2*C*b(7) - A*b(5);
d(6) = 3*D*b(7);
d(5) = C*b(5) - 2*A*b(3);
d(4) = 2*D*b(5) - B*b(3);
d(3) = -3*A*b(1);
d(2) = D*b(3) - 2*B*b(1);
d(1) = -C*b(1);
d = d(8:-1:1);
mMlambda = roots(d);
tg = imag(mMlambda)./real(mMlambda);
mMlambda = real(mMlambda(find(abs(tg)<1e-6)));
lNeg = mMlambda(find(mMlambda<0));
if length(lNeg)==0,
lNeg = -1/eps;
end
lPos = mMlambda(find(mMlambda>=0));
if length(lPos)==0,
lPos = 1/eps;
end
lmi = max(lNeg);
lma = min(lPos);
lam = [lmi lma];
mMnewSt = polyval([A B C D],lam)./(polyval(b(7:-1:1),lam)).^0.5;
skmin = min(mMnewSt);
skmax = max(mMnewSt);
% Given a desired skewness, solves for lambda
if sk<=skmin & Warn,
lam = lmi;
warning('Saturating (down) skewness!');
skmin
elseif sk>=skmax & Warn,
lam = lma;
warning('Saturating (up) skewness!');
skmax
else
% The equation is sum(c.*lam.^(0:6))=0
c=a-b*sk^2;
c=c(7:-1:1);
r=roots(c);
% Chose the real solution with minimum absolute value with the rigth sign
lam=-Inf;
co=0;
for n=1:6,
tg = imag(r(n))/real(r(n));
if (abs(tg)<1e-6)&(sign(real(r(n)))==sign(sk-s)),
co=co+1;
lam(co)=real(r(n));
end
end
if min(abs(lam))==Inf & Warn,
display('Warning: Skew adjustment skipped!');
lam=0;
end
p=[A B C D];
if length(lam)>1,
foo=sign(polyval(p,lam));
if any(foo==0),
lam = lam(find(foo==0));
else
lam = lam(find(foo==sign(sk))); % rejects the symmetric solution
end
if length(lam)>0,
lam=lam(find(abs(lam)==min(abs(lam)))); % the smallest that fix the skew
lam=lam(1);
else
lam = 0;
end
end
end % if else
% Modify the channel
chm=ch+lam*(ch.^2-sd^2-sd*s*ch); % adjust the skewness
chm=chm*sqrt(m(2)/mean2(chm.^2)); % adjust the variance
chm=chm+me; % adjust the mean
% (These don't affect the skewness)
% Check the result
%mem=mean2(chm);
%sk2=mean2((chm-mem).^3)/mean2((chm-mem).^2).^(3/2);
%sk - sk2
%SNR=snr(sk,sk-sk2)