-
Notifications
You must be signed in to change notification settings - Fork 23
/
modkurt.m
172 lines (126 loc) · 3.69 KB
/
modkurt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function [chm, snrk] = modkurt(ch,k,p);
% Modify the kurtosis in one step, by moving in gradient direction until
% reaching the desired kurtosis value.
% It does not affect the mean nor the variance, but it affects the skewness.
% This operation is not an orthogonal projection, but the projection angle is
% near pi/2 when k is close to the original kurtosis, which is a realistic assumption
% when doing iterative projections in a pyramid, for example (small corrections
% to the channels' statistics).
%
% [chm, snrk] = modkurt(ch,k,p);
% ch: channel
% k: desired kurtosis (k=M4/M2^2)
% p [OPTIONAL]: mixing proportion between k0 and k
% it imposes (1-p)*k0 + p*k,
% being k0 the current kurtosis.
% DEFAULT: p = 1;
% Javier Portilla, Oct.12/97, NYU
Warn = 0; % Set to 1 if you want to see warning messages
if ~exist('p'),
p = 1;
end
me=mean2(ch);
ch=ch-me;
% Compute the moments
m=zeros(12,1);
for n=2:12,
m(n)=mean2(ch.^n);
end
% The original kurtosis
k0=m(4)/m(2)^2;
snrk = snr(k, k-k0);
if snrk > 60,
chm = ch+me;
return
end
k = k0*(1-p) + k*p;
% Some auxiliar variables
a=m(4)/m(2);
% Coeficients of the numerator (A*lam^4+B*lam^3+C*lam^2+D*lam+E)
A=m(12)-4*a*m(10)-4*m(3)*m(9)+6*a^2*m(8)+12*a*m(3)*m(7)+6*m(3)^2*m(6)-...
4*a^3*m(6)-12*a^2*m(3)*m(5)+a^4*m(4)-12*a*m(3)^2*m(4)+...
4*a^3*m(3)^2+6*a^2*m(3)^2*m(2)-3*m(3)^4;
B=4*(m(10)-3*a*m(8)-3*m(3)*m(7)+3*a^2*m(6)+6*a*m(3)*m(5)+3*m(3)^2*m(4)-...
a^3*m(4)-3*a^2*m(3)^2-3*m(4)*m(3)^2);
C=6*(m(8)-2*a*m(6)-2*m(3)*m(5)+a^2*m(4)+2*a*m(3)^2+m(3)^2*m(2));
D=4*(m(6)-a^2*m(2)-m(3)^2);
E=m(4);
% Define the coefficients of the denominator (F*lam^2+G)^2
F=D/4;
G=m(2);
% test
test = 0;
if test,
grd = ch.^3 - a*ch - m(3);
lam = -0.001:0.00001:0.001;
k = (A*lam.^4+B*lam.^3+C*lam.^2+D*lam+E)./...
(F*lam.^2 + G).^2;
for lam = -0.001:0.00001:0.001,
n = lam*100000+101;
chp = ch + lam*grd;
k2(n) = mean2(chp.^4)/mean2(chp.^2)^2;
%k2(n) = mean2(chp.^4);
end
lam = -0.001:0.00001:0.001;
snr(k2, k-k2)
end % test
% Now I compute its derivative with respect to lambda
% (only the roots of derivative = 0 )
d(1) = B*F;
d(2) = 2*C*F - 4*A*G;
d(3) = 4*F*D -3*B*G - D*F;
d(4) = 4*F*E - 2*C*G;
d(5) = -D*G;
mMlambda = roots(d);
tg = imag(mMlambda)./real(mMlambda);
mMlambda = mMlambda(find(abs(tg)<1e-6));
lNeg = mMlambda(find(mMlambda<0));
if length(lNeg)==0,
lNeg = -1/eps;
end
lPos = mMlambda(find(mMlambda>=0));
if length(lPos)==0,
lPos = 1/eps;
end
lmi = max(lNeg);
lma = min(lPos);
lam = [lmi lma];
mMnewKt = polyval([A B C D E],lam)./(polyval([F 0 G],lam)).^2;
kmin = min(mMnewKt);
kmax = max(mMnewKt);
% Given a desired kurtosis, solves for lambda
if k<=kmin & Warn,
lam = lmi;
warning('Saturating (down) kurtosis!');
kmin
elseif k>=kmax & Warn,
lam = lma;
warning('Saturating (up) kurtosis!');
kmax
else
% Coeficients of the algebraic equation
c0 = E - k*G^2;
c1 = D;
c2 = C - 2*k*F*G;
c3 = B;
c4 = A - k*F^2;
% Solves the equation
r=roots([c4 c3 c2 c1 c0]);
% Chose the real solution with minimum absolute value with the rigth sign
tg = imag(r)./real(r);
%lambda = real(r(find(abs(tg)<1e-6)));
lambda = real(r(find(abs(tg)==0)));
if length(lambda)>0,
lam = lambda(find(abs(lambda)==min(abs(lambda))));
lam = lam(1);
else
lam = 0;
end
end % if ... else
% Modify the channel
chm=ch+lam*(ch.^3-a*ch-m(3)); % adjust the kurtosis
chm=chm*sqrt(m(2)/mean2(chm.^2)); % adjust the variance
chm=chm+me; % adjust the mean
% Check the result
%k2=mean2((chm-me).^4)/(mean2((chm-me).^2))^2;
%SNR=snr(k,k-k2)