-
Notifications
You must be signed in to change notification settings - Fork 3.9k
Introduction
The best way to understand what the Disruptor is, is to compare it to something well understood and quite similar in purpose. In the case of the Disruptor this would be Java's BlockingQueue. Like a queue the purpose of the Disruptor is to move data (e.g. messages or events) between threads within the same process. However there are some key features that the Disruptor provides that distinguish it from a queue. They are:
- Multicast events to consumers, with consumer dependency graph.
- Pre-allocate memory for events.
- Optionally lock-free.
Before we can understand how the Disruptor works, it is worthwhile defining a number of terms that will be used throughout the documentation and the code. For those with a DDD bent, think of this as the ubiquitous language of the Disruptor domain.
- Ring Buffer: The Ring Buffer is often considered the main aspect of the Disruptor, however from 3.0 onwards the Ring Buffer is only responsible for the storing and updating of the data (Events) that move through the Disruptor. And for some advanced use cases can be completely replaced by the user.
- Sequence: The Disruptor uses Sequences as a means to identify where a particular component is up to. Each consumer (EventProcessor) maintains a Sequence as does the Disruptor itself. The majority of the concurrent code relies on the the movement of these Sequence values, hence the Sequence supports many of the current features of an AtomicLong. In fact the only real difference between the 2 that the Sequence contains additional functionality to prevent false sharing between Sequences and other values.
- Sequencer: The Sequencer is the real core of the Disruptor. The 2 implementations (single producer, multi producer) of this interface implement all of the concurrent algorithms use for fast, correct passing of data between producers and consumers.
- SequenceBarrier
- WaitStrategy
- Event
- EventProcessor
- EventHandler
This is the biggest behavioural difference between queues and the Disruptor. When you have multiple consumers listening on the same Disruptor all events are published to all consumers in contrast to a queue where a single event will only be sent to a single consumer. The behaviour of the Disruptor is intended to be used in cases where you need to independent multiple parallel operations on the same data. The canonical example from LMAX is where we have three operations, journalling (writing the input data to a persistent journal file), replication (sending the input data to another machine to ensure that there is a remote copy of the data), and business logic (the real processing work). The Executor-style event processing, where scale is found by processing different events in parallel at the same is also possible using the WorkerPool. Note that is bolted on top of the existing Disruptor classes and is not treated with the same first class support, hence it may not be the most efficient way to achieve that particular goal.
To support real world applications of the parallel processing behaviour it was necessary to support co-ordination between the consumers. Referring back to the example described above, it necessary to prevent the business logic consumer from making progress until the journalling and replication consumers have completed their tasks. We call this concept gating, or more correctly the feature that is a super-set of this behaviour is called gating. Gating happens in two places. Firstly we need to ensure that the producers do not overrun consumers. This is handled by adding the relevant consumers to the Disruptor by calling RingBuffer.addGatingConsumers(). Secondly, the case referred to previously is implemented by constructing a SequenceBarrier containing Sequences from the components that must complete their processing first.