forked from MoonBlvd/tad-IROS2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fol.py
128 lines (106 loc) · 4.93 KB
/
train_fol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import sys
import os
import numpy as np
import time
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils import data
from torchsummaryX import summary
from lib.utils.train_val_utils import train_fol_ego, val_fol_ego
from lib.models.rnn_ed import FolRNNED, EgoRNNED
from lib.utils.fol_dataloader import HEVIDataset
from config.config import *
from tensorboardX import SummaryWriter
print("Cuda available: ", torch.cuda.is_available())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load args
args = parse_args()
# initialize model
fol_model = FolRNNED(args).to(device)
all_params = fol_model.parameters()
if args.with_ego:
print("Initializing pre-trained ego motion predictor...")
ego_pred_model = EgoRNNED(args).to(device)
ego_pred_model.load_state_dict(torch.load(args.best_ego_pred_model))
print("Pre-trained ego_motion predictor done!")
all_params = list(ego_pred_model.parameters()) + list(fol_model.parameters())
optimizer = optim.RMSprop(all_params, lr=args.lr)
# initialize datasets
print("Initializing train and val datasets...")
dataloader_params ={
"batch_size": args.batch_size,
"shuffle": args.shuffle,
"num_workers": args.num_workers
}
# train_set = HEVIDataset(args, 'train')
# train_gen = data.DataLoader(train_set, **dataloader_params)
# print("Number of training samples:", train_set.__len__())
val_set = HEVIDataset(args, 'val')
print("Number of validation samples:", val_set.__len__())
val_gen = data.DataLoader(val_set, **dataloader_params)
# print model summary
if args.with_ego:
summary(ego_pred_model,
torch.zeros(1, args.segment_len, 3).to(device))
summary(fol_model,
torch.zeros(1, args.segment_len, 4).to(device),
torch.zeros(1, args.segment_len, 50).to(device),
torch.zeros(1, args.segment_len, args.pred_timesteps, 3).to(device))
# summary writer
writer = SummaryWriter('summary/fol_ego/exp-1')
# train
all_val_loss = []
min_loss = 1e6
best_fol_model = None
best_ego_model = None
for epoch in range(1, args.nb_fol_epoch+1):
# regenerate the training dataset
train_set = HEVIDataset(args, 'train')
train_gen = data.DataLoader(train_set, **dataloader_params)
print("Number of training samples:", train_set.__len__())
start = time.time()
# train
train_loss, train_fol_loss, train_ego_pred_loss = train_fol_ego(epoch,
args,
fol_model,
ego_pred_model,
optimizer,
train_gen,
verbose=True) #train_fol(epoch, model, optimizer, train_gen,)
writer.add_scalar('data/train_loss', train_loss, epoch)
writer.add_scalar('data/train_fol_loss', train_fol_loss, epoch)
writer.add_scalar('data/train_ego_pred_loss', train_ego_pred_loss, epoch)
# print('====> Epoch: {} object pred loss: {:.4f}'.format(epoch, train_loss))
# val
val_loss, val_fol_loss, val_ego_pred_loss = val_fol_ego(epoch,
args,
fol_model,
ego_pred_model,
val_gen,
verbose=True)
writer.add_scalar('data/val_loss', val_loss, epoch)
writer.add_scalar('data/val_fol_loss', val_fol_loss, epoch)
writer.add_scalar('data/val_ego_pred_loss', val_ego_pred_loss, epoch)
# print('====> Epoch: {} validation loss: {:.4f}'.format(epoch, val_loss))
all_val_loss.append(val_loss)
# print time
elipse = time.time() - start
print("Elipse: ", elipse)
# save checkpoints if loss decreases
if val_loss < min_loss:
try:
os.remove(best_fol_model)
os.remove(best_ego_model)
except:
pass
min_loss = val_loss
saved_fol_model_name = 'fol_epoch_' + str(format(epoch,'03')) + '_loss_%.4f'%val_fol_loss + '.pt'
saved_ego_pred_model_name = 'ego_pred_epoch_' + str(format(epoch,'03')) + '_loss_%.4f'%val_ego_pred_loss + '.pt'
print("Saving checkpoints: " + saved_fol_model_name + ' and ' + saved_ego_pred_model_name)
if not os.path.isdir(args.checkpoint_dir):
os.mkdir(args.checkpoint_dir)
torch.save(fol_model.state_dict(), os.path.join(args.checkpoint_dir, saved_fol_model_name))
torch.save(ego_pred_model.state_dict(), os.path.join(args.checkpoint_dir, saved_ego_pred_model_name))
best_fol_model = os.path.join(args.checkpoint_dir, saved_fol_model_name)
best_ego_model = os.path.join(args.checkpoint_dir, saved_ego_pred_model_name)