-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathinference_6b.py
270 lines (209 loc) · 17.5 KB
/
inference_6b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from models_server.chatglm2.jina_client import encode
from prompts.intent_recognition import intent_recognition_prompt
from prompts.entity_recognition import entity_recognition_prompt
from prompts.answer_generation import answer_generation_prompt
from prompts.open_question import open_question_prompt
from models_server.text2vec.jina_embedding import JinaEmbeddings
from database_server.weaviate.db import insert_table_uuid,insert_txt_uuid
from langchain.vectorstores import Weaviate
from elasticsearch import Elasticsearch
import weaviate
import json
import os
import glob
def parse_entity_recognition(response: str):
parse_list = []
lines = response.split('\n')
for line in lines:
sep = ':' if ':' in lines[-1] else ':'
if "公司名" in line:
parse_list.append(line.split(sep)[1])
if "年份" in line:
parse_list.append(line.split(sep)[1])
return parse_list
def parse_intent_recognition(response: str):
lines = response.split('\n')
return lines[-1]
def attain_uuid(entities, uuid_dict):
for k, v in uuid_dict.items():
fg = True
for entity in entities:
if entity not in k:
fg = False
break
if fg:
print(entities, k)
return v, k
return None, None
def generate(question, uuid_dict, crawl_dict, crawl_name_dict, es, log_file):
log_file.write("= = 流程开始 = = \n")
log_file.write(f"Q:\n{question}\n\n")
# -> Intent Recognition
log_file.write("= = 意图识别 = = \n")
prompt = intent_recognition_prompt(question)
response = encode(prompt, history=[])
log_file.write(f"R:\n{response[0].text}\n\n")
if "检索问题" not in parse_intent_recognition(response[0].text):
log_file.write("开放问题直接作答\n")
prompt = open_question_prompt(question)
response = encode(prompt, history=[])
answer = response[0].text
log_file.write(f"R:\n{answer}\n\n")
return answer
# print("意图识别时间:",time.time()-initial_time)
############################ -> Entity Recognition
try_year_list = ["2021年","2022年"]
log_file.write("= = 实体提取 = = \n")
prompt = entity_recognition_prompt(question)
response = encode(prompt, history=[])
log_file.write(f"R:\n{response[0].text}\n\n")
entities = parse_entity_recognition(response[0].text)
uuid, file_name = attain_uuid(entities, uuid_dict)
log_file.write(f"R:\n{uuid}\n\n")
if not uuid and entities[0][0] == '年':
entities[0] = entities[0][1:]
uuid, file_name = attain_uuid(entities, uuid_dict)
log_file.write(f"R:\n 1)首字修复,修复公司名称: {entities[0]}\n\n")
# if not uuid:
# for try_year in try_year_list:
# old_year = entities[1]
# entities[1] = try_year
# uuid, file_name = attain_uuid(entities, uuid_dict)
# if uuid:
# log_file.write(f"R:\n 2)年份修复,{old_year} 改为 {entities[1]},uuid:{uuid}\n\n")
# break
if not uuid:
log_file.write("未知公司不予作答\n")
return ""
# print("实体提取时间:",time.time()-initial_time)
extra_information_list = []
################################ -> ElasticSearch
log_file.write("= = ElasticSearch = = \n")
# index_name = f"{uuid}"
# # index_name = "all_property"
# try:
# for word in entities:
# replaced_question = question.replace(word, '')
# search_query = {
# "query": {
# "match": {
# "text": replaced_question
# }
# }
# }
# search_resp = es.search(index=index_name, body=search_query)
# docs = search_resp["hits"]["hits"][:3]
# for i, e in enumerate(docs):
# property_name = e['_source']['text']
# company = crawl_name_dict[file_name]
# year = file_name.split("__")[4]+"报"
# property_value = crawl_dict[company][year][property_name]
# # if not property_value or property_value in ["None", "null"]:
# # continue
# log_file.write(
# f"ES: = = = = = = = = = = = k[{i}] = = = = = = = = = = =\n")
# log_file.write(e['_source']['text'])
# log_file.write("\n")
# extra_information_list.append(f"{property_name}是{property_value}")
# except:
# log_file.write("数据库暂未录入\n")
##################################### -> Embedding 尝试注入
if not extra_information_list:
# if True:
log_file.write("= = EmbeddingInsert(Table) = = \n")
Embedding_Match = False
if entities[1][-1]=="年":
target_year = entities[1][:-1]
target_name = entities[0]
log_file.write(f"尝试搜索{target_year}*{target_name}*.cal\n")
try:
target_dir = "/home/kylin/workspace/ChatFinance/data/chatglm_llm_fintech_raw_dataset/alltable"
# pattern = rf'^{target_year}.*{target_name}.*\.cal$'
pattern = os.path.join(target_dir, f"{target_year}*{target_name}*.cal")
matched_files = [os.path.abspath(path) for path in glob.glob(pattern)]
insert_table_uuid(matched_files[0],uuid,client,embedding)
log_file.write(f"搜索Table注入成功,匹配文件名字:{matched_files[0]}\n")
Embedding_Match = True
except:
log_file.write("搜索不到相关.cal文件\n")
# log_file.write("= = EmbeddingInsert(Txt) = = \n")
# log_file.write(f"尝试搜索{target_year}*{target_name}*.txt\n")
# try:
# target_dir = "/home/kylin/workspace/ChatFinance/data/chatglm_llm_fintech_raw_dataset/alldata"
# # pattern = rf'^{target_year}.*{target_name}.*\.txt$'
# pattern = os.path.join(target_dir, f"{target_year}*{target_name}*.txt")
# matched_files = [os.path.abspath(path) for path in glob.glob(pattern)]
# insert_txt_uuid(matched_files[0],uuid,client,embedding)
# log_file.write(f"搜索Txt注入成功,匹配文件名字:{matched_files[0]}\n")
# except:
# log_file.write("搜索不到相关.Txt文件\n")
##################################### -> Embedding Database
if not extra_information_list and Embedding_Match:
# if Embedding_Match:
log_file.write("= = EmbeddingDatabase = = \n")
index_name = f"LangChain_{uuid}"
try:
db = Weaviate(client=client, embedding=embedding,
index_name=index_name, text_key="text", by_text=False)
for word in entities:
replaced_question = question.replace(word, '')
docs = db.similarity_search(replaced_question, k=5)
for i, e in enumerate(docs):
log_file.write(
f"ED: = = = = = = = = = k[{i}] = = = = = = = = =\n")
log_file.write(e.page_content)
log_file.write("\n")
extra_information_list.append(e.page_content)
except:
log_file.write("数据库暂未录入\n")
# print("向量库搜索时间:",time.time()-initial_time)
log_file.write("= = AnswerGeneration = = \n")
extra_information = "\n".join(extra_information_list)
log_file.write(extra_information+'\n')
prompt = answer_generation_prompt(extra_information, question)
response = encode(prompt, history=[])
log_file.write(f"R:\n{response[0].text}\n\n")
answer=response[0].text
return answer
# import time
# initial_time = time.time()
# -> Init Embedding Database
embedding = JinaEmbeddings("127.0.0.1")
client = weaviate.Client(
url="http://localhost:50003", # Replace with your endpoint
auth_client_secret=weaviate.AuthApiKey(api_key="vdb-secret-key"))
# print("向量库时间:",time.time()-initial_time)
# -> Init Embedding Database
es = Elasticsearch('http://localhost:50004')
# print("es时间:",time.time()-initial_time)
# -> Init UUID Dict
with open("./data/chatglm_llm_fintech_raw_dataset/uuid.json", "r") as f:
uuid_dict = json.load(f)
# -> Init crawl Dict
with open("./data/chatglm_llm_fintech_raw_dataset/allcrawl.json", "r") as f:
crawl_dict = json.load(f)
with open("./data/chatglm_llm_fintech_raw_dataset/name_map_crawl.json", "r") as f:
crawl_name_dict = json.load(f)
# print("dict时间:",time.time()-initial_time)
# question = "本钢板材在2020年对联营企业和合营企业的投资收益是多少元?"
import time
from datetime import datetime
formatted_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
bad_ids = [0, 1, 4, 5, 10, 11, 13, 17, 21, 25, 29, 32, 37, 41, 51, 59, 61, 64, 67, 69, 71, 102, 106, 108, 115, 127, 133, 135, 141, 146, 148, 150, 152, 160, 161, 168, 170, 174, 177, 180, 183, 184, 186, 188, 194, 195, 196, 198, 210, 214, 215, 219, 222, 228, 237, 239, 240, 245, 252, 257, 259, 260, 267, 270, 271, 273, 276, 277, 278, 280, 281, 289, 295, 303, 305, 315, 332, 343, 346, 347, 361, 362, 367, 368, 370, 379, 382, 383, 393, 396, 405, 409, 416, 417, 419, 428, 429, 434, 435, 436, 438, 439, 444, 447, 448, 451, 454, 465, 470, 474, 483, 490, 495, 515, 520, 526, 530, 531, 538, 540, 541, 551, 554, 555, 556, 567, 573, 576, 581, 583, 586, 587, 590, 594, 596, 618, 619, 621, 626, 632, 634, 641, 642, 648, 653, 654, 656, 663, 667, 668, 675, 676, 683, 692, 705, 708, 714, 719, 723, 724, 726, 727, 729, 732, 733, 753, 754, 773, 776, 780, 781, 785, 793, 797, 798, 799, 801, 802, 804, 806, 811, 812, 814, 819, 822, 847, 849, 854, 856, 860, 865, 868, 870, 880, 887, 905, 906, 914, 915, 919, 924, 935, 946, 948, 951, 953, 957, 961, 970, 984, 987, 988, 989, 990, 995, 998, 1009, 1011, 1014, 1016, 1022, 1023, 1027, 1032, 1039, 1041, 1043, 1045, 1047, 1048, 1049, 1051, 1054, 1055, 1058, 1060, 1062, 1066, 1067, 1068, 1069, 1072, 1073, 1074, 1078, 1083, 1084, 1088, 1090, 1091, 1093, 1095, 1099, 1102, 1103, 1104, 1121, 1128, 1130, 1131, 1135, 1144, 1146, 1158, 1161, 1162, 1167, 1169, 1171, 1175, 1176, 1178, 1181, 1182, 1186, 1187, 1190, 1193, 1194, 1198, 1199, 1200, 1201, 1203, 1205, 1207, 1208, 1211, 1221, 1227, 1228, 1230, 1232, 1234, 1238, 1242, 1243, 1245, 1247, 1248, 1253, 1258, 1259, 1260, 1261, 1267, 1268, 1269, 1270, 1271, 1277, 1279, 1285, 1290, 1291, 1295, 1296, 1299, 1301, 1302, 1308, 1310, 1312, 1315, 1316, 1320, 1321, 1322, 1323, 1324, 1326, 1328, 1329, 1330, 1332, 1333, 1334, 1338, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1350, 1356, 1357, 1362, 1364, 1365, 1372, 1374, 1377, 1383, 1384, 1385, 1393, 1395, 1400, 1407, 1410, 1412, 1413, 1421, 1423, 1426, 1428, 1438, 1439, 1440, 1442, 1444, 1446, 1453, 1457, 1458, 1459, 1460, 1466, 1474, 1479, 1480, 1481, 1492, 1493, 1495, 1496, 1504, 1505, 1507, 1508, 1510, 1514, 1519, 1522, 1531, 1536, 1540, 1543, 1545, 1549, 1550, 1556, 1558, 1559, 1563, 1564, 1565, 1570, 1574, 1576, 1577, 1582, 1587, 1588, 1594, 1595, 1598, 1599, 1603, 1604, 1606, 1608, 1613, 1614, 1615, 1616, 1624, 1629, 1630, 1633, 1637, 1647, 1651, 1660, 1662, 1665, 1670, 1671, 1673, 1678, 1680, 1681, 1683, 1686, 1693, 1696, 1698, 1701, 1702, 1705, 1708, 1710, 1711, 1716, 1720, 1722, 1728, 1732, 1741, 1742, 1744, 1751, 1754, 1757, 1758, 1760, 1762, 1764, 1767, 1771, 1774, 1777, 1781, 1783, 1790, 1791, 1794, 1797, 1800, 1804, 1805, 1808, 1809, 1810, 1811, 1817, 1820, 1825, 1826, 1827, 1830, 1831, 1833, 1837, 1846, 1850, 1852, 1856, 1858, 1864, 1868, 1872, 1874, 1875, 1876, 1881, 1883, 1885, 1889, 1892, 1893, 1896, 1897, 1901, 1910, 1911, 1914, 1919, 1920, 1926, 1929, 1932, 1938, 1940, 1942, 1943, 1945, 1946, 1952, 1958, 1961, 1962, 1963, 1964, 1965, 1967, 1968, 1971, 1983, 1989, 1996, 1997, 1999, 2002, 2003, 2006, 2014, 2015, 2016, 2025, 2027, 2029, 2031, 2035, 2048, 2062, 2065, 2069, 2071, 2074, 2082, 2086, 2089, 2090, 2092, 2093, 2094, 2096, 2098, 2099, 2105, 2108, 2109, 2111, 2117, 2118, 2119, 2126, 2131, 2132, 2135, 2137, 2142, 2152, 2167, 2182, 2184, 2190, 2199, 2204, 2213, 2214, 2217, 2219, 2221, 2231, 2233, 2234, 2242, 2243, 2244, 2247, 2259, 2268, 2271, 2272, 2282, 2290, 2292, 2294, 2295, 2296, 2297, 2309, 2311, 2312, 2319, 2322, 2324, 2326, 2329, 2333, 2336, 2339, 2340, 2341, 2345, 2346, 2350, 2355, 2367, 2372, 2375, 2379, 2382, 2383, 2386, 2387, 2389, 2402, 2405, 2410, 2413, 2418, 2423, 2425, 2432, 2438, 2440, 2444, 2451, 2452, 2457, 2459, 2463, 2464, 2465, 2467, 2469, 2478, 2480, 2487, 2490, 2502, 2507, 2508, 2509, 2510, 2511, 2517, 2518, 2523, 2530, 2534, 2538, 2539, 2541, 2546, 2548, 2549, 2556, 2559, 2564, 2567, 2570, 2572, 2573, 2575, 2578, 2584, 2586, 2587, 2591, 2598, 2600, 2603, 2611, 2619, 2624, 2629, 2630, 2636, 2640, 2641, 2643, 2644, 2646, 2648, 2655, 2663, 2668, 2671, 2672,
2674, 2677, 2678, 2679, 2680, 2685, 2686, 2687, 2696, 2701, 2708, 2709, 2712, 2713, 2717, 2720, 2725, 2728, 2729, 2732, 2741, 2742, 2743, 2749, 2757, 2761, 2764, 2771, 2774, 2777, 2781, 2782, 2788, 2790, 2791, 2792, 2795, 2796, 2797, 2801, 2803, 2806, 2807, 2810, 2811, 2812, 2816, 2818, 2821, 2835, 2837, 2838, 2844, 2850, 2852, 2855, 2861, 2867, 2877, 2885, 2886, 2890, 2895, 2902, 2904, 2905, 2906, 2908, 2912, 2917, 2919, 2922, 2923, 2924, 2926, 2927, 2928, 2932, 2933, 2946, 2947, 2950, 2951, 2955, 2957, 2959, 2961, 2967, 2968, 2969, 2975, 2978, 2982, 2986, 2991, 2992, 2994, 2996, 2997, 2998, 3006, 3010, 3012, 3013, 3017, 3018, 3019, 3023, 3026, 3029, 3030, 3031, 3036, 3038, 3040, 3043, 3044, 3050, 3051, 3054, 3056, 3062, 3065, 3068, 3071, 3078, 3079, 3080, 3083, 3085, 3086, 3090, 3111, 3112, 3117, 3118, 3119, 3125, 3127, 3128, 3133, 3135, 3137, 3139, 3150, 3153, 3154, 3156, 3158, 3161, 3164, 3166, 3169, 3174, 3177, 3182, 3188, 3190, 3192, 3195, 3199, 3203, 3205, 3208, 3209, 3211, 3212, 3213, 3215, 3216, 3218, 3225, 3226, 3230, 3231, 3237, 3240, 3243, 3244, 3247, 3248, 3252, 3262, 3268, 3273, 3276, 3277, 3281, 3282, 3285, 3286, 3291, 3292, 3293, 3295, 3296, 3298, 3306, 3310, 3314, 3315, 3316, 3318, 3320, 3321, 3323, 3325, 3334, 3340, 3341, 3342, 3343, 3345, 3352, 3353, 3360, 3361, 3362, 3364, 3366, 3370, 3371, 3373, 3376, 3377, 3383, 3384, 3387, 3388, 3392, 3401, 3404, 3411, 3415, 3418, 3419, 3421, 3424, 3427, 3429, 3436, 3437, 3439, 3440, 3445, 3451, 3460, 3461, 3463, 3467, 3480, 3481, 3482, 3493, 3496, 3498, 3500, 3501, 3502, 3504, 3506, 3512, 3513, 3514, 3517, 3518, 3520, 3521, 3522, 3524, 3527, 3537, 3538, 3541, 3547, 3568, 3569, 3572, 3575, 3576, 3579, 3583, 3585, 3588, 3590, 3591, 3594, 3596, 3605, 3622, 3626, 3632, 3633, 3636, 3643, 3644, 3645, 3648, 3649, 3650, 3653, 3656, 3660, 3661, 3663, 3676, 3687, 3695, 3697, 3703, 3705, 3722, 3724, 3730, 3733, 3734, 3736, 3743, 3745, 3748, 3750, 3758, 3759, 3766, 3773, 3791, 3793, 3798, 3799, 3809, 3812, 3813, 3815, 3817, 3819, 3821, 3824, 3829, 3832, 3833, 3837, 3838, 3842, 3847, 3848, 3851, 3852, 3862, 3865, 3870, 3872, 3873, 3875, 3877, 3880, 3881, 3894, 3896, 3899, 3906, 3910, 3913, 3917, 3920, 3923, 3925, 3941, 3944, 3949, 3951, 3969, 3970, 3975, 3976, 3978, 3982, 3986, 3991, 3992, 3997, 3998, 4002, 4012, 4015, 4019, 4020, 4021, 4023, 4024, 4025, 4034, 4035, 4037, 4038, 4039, 4041, 4045, 4049, 4057, 4062, 4063, 4070, 4071, 4074, 4077, 4079, 4080, 4083, 4085, 4086, 4090, 4095, 4100, 4101, 4103, 4106, 4110, 4115, 4121, 4126, 4140, 4143, 4149, 4153, 4158, 4159, 4161, 4167, 4168, 4170, 4173, 4180, 4184, 4191, 4198, 4199, 4204, 4206, 4211, 4213, 4214, 4217, 4221, 4223, 4224, 4226, 4230, 4231, 4232, 4241, 4242, 4244, 4245, 4247, 4248, 4250, 4254, 4259, 4261, 4262, 4263, 4266, 4267, 4271, 4272, 4279, 4286, 4287, 4292, 4299, 4300, 4304, 4305, 4307, 4308, 4310, 4312, 4313, 4314, 4320, 4328, 4332, 4335, 4340, 4344, 4348, 4349, 4351, 4353, 4362, 4364, 4366, 4370, 4372, 4375, 4376, 4379, 4381, 4382, 4384, 4386, 4399, 4400, 4401, 4404, 4408, 4411, 4412, 4413, 4415, 4418, 4419, 4421, 4422, 4434, 4435, 4437, 4439, 4443, 4446, 4447, 4448, 4455, 4456, 4457, 4462, 4463, 4467, 4468, 4471, 4473, 4474, 4477, 4480, 4482, 4485, 4487, 4495, 4497, 4498, 4499, 4503, 4514, 4525, 4526, 4528, 4529, 4532, 4540, 4545, 4548, 4560, 4563, 4565, 4567, 4569, 4571, 4575, 4583, 4584, 4592, 4593, 4596, 4599, 4600, 4601, 4604, 4609, 4616, 4617, 4619, 4625, 4627, 4630, 4636, 4642, 4647, 4651, 4653, 4654, 4657, 4659, 4667, 4672, 4683, 4685, 4686, 4697, 4699, 4700, 4702, 4711, 4714, 4718, 4727, 4729, 4735, 4738, 4739, 4741, 4748, 4751, 4752, 4753, 4763, 4767, 4769, 4776, 4781, 4784, 4788, 4793, 4796, 4797, 4798, 4800, 4808, 4809, 4812, 4816, 4818, 4822, 4826, 4827, 4831, 4832, 4833, 4836, 4837, 4845, 4846, 4847, 4849, 4852, 4855, 4859, 4860, 4861, 4867, 4868, 4869, 4871, 4875, 4876, 4877, 4884, 4891, 4895, 4896, 4907, 4909, 4913, 4918, 4919, 4922, 4926, 4927, 4934, 4935, 4936, 4944, 4945, 4946, 4957, 4959, 4962, 4964, 4965, 4966, 4971, 4973, 4974, 4975, 4985, 4986, 4995, 4999]
with open(f"./logs/log_{formatted_time}.txt", "w") as log_file, open(f"./logs/submission_{formatted_time}.json", "w") as sm_file, open("./data/chatglm_llm_fintech_raw_dataset/test_questions.jsonl", "r") as qs_file:
question_count = 0
for question_line in qs_file:
question_count += 1
##### id 截断
# if question_count<1734:
# continue
print("question_count:",question_count)
question_dict = json.loads(question_line)
##### bad id 截断
if question_dict["id"] not in bad_ids:
continue
answer = generate(question_dict["question"], uuid_dict, crawl_dict, crawl_name_dict, es, log_file)
answer_dict = {"id":question_dict["id"],"question":question_dict["question"],"answer":answer}
sm_file.write(f"{answer_dict}\n")
time.sleep(3)