-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathevaluate.py
52 lines (40 loc) · 1.63 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
from dataloader import prepare_dataloader
def evaluate(args, model, step):
# Get dataset
data_loader = prepare_dataloader(args.data_path, "val.txt", batch_size=50, shuffle=False)
# Get loss function
Loss = model.get_criterion()
# Evaluation
mel_l_list = []
d_l_list = []
f_l_list = []
e_l_list = []
current_step = 0
for i, batch in enumerate(data_loader):
# Get Data
id_ = batch["id"]
sid, text, mel_target, D, log_D, f0, energy, \
src_len, mel_len, max_src_len, max_mel_len = model.parse_batch(batch)
with torch.no_grad():
# Forward
mel_output, _, _, log_duration_output, f0_output, energy_output, src_mask, mel_mask, out_mel_len = model(
text, src_len, mel_target, mel_len, D, f0, energy, max_src_len, max_mel_len)
# Cal Loss
mel_loss, d_loss, f_loss, e_loss = Loss(mel_output, mel_target,
log_duration_output, log_D, f0_output, f0, energy_output, energy, src_len, mel_len)
# Logger
m_l = mel_loss.item()
d_l = d_loss.item()
f_l = f_loss.item()
e_l = e_loss.item()
mel_l_list.append(m_l)
d_l_list.append(d_l)
f_l_list.append(f_l)
e_l_list.append(e_l)
current_step += 1
mel_l = sum(mel_l_list) / len(mel_l_list)
d_l = sum(d_l_list) / len(d_l_list)
f_l = sum(f_l_list) / len(f_l_list)
e_l = sum(e_l_list) / len(e_l_list)
return mel_l, d_l, f_l, e_l