-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcifar.py
301 lines (280 loc) · 9.07 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
from .. import to_cpu
from ..core import *
from .dataset import *
from .transforms import Compose, ToTensor, Normalize
import matplotlib.pyplot as plt
import tarfile
import pickle
import random
class CIFAR10(Dataset):
'''CIFAR10 Dataset\n
Args:
train (bool): if True, load training dataset
transforms (transforms): transforms to apply on the features
target_transforms (transforms): transforms to apply on the labels
Shape:
- data: [N, 3, 32, 32]
'''
def __init__(self, train=True,
transforms=Compose([ToTensor(), Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])]),
target_transforms=None):
super().__init__(train, transforms, target_transforms)
def __len__(self):
if self.train:
return 50000
else:
return 10000
def state_dict(self):
return {
'label_map': cifar10_labels
}
def prepare(self):
url = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
self._download(url, 'cifar-10.tar.gz')
if self.train:
self.data = np.empty((50000,3*32*32))
self.label = np.empty((50000,10))
for i in range(5):
self.data[i*10000:(i+1)*10000] = self._load_data(self.root+'/cifar-10.tar.gz', i+1, 'train')
self.label[i*10000:(i+1)*10000] = CIFAR10.to_one_hot(self._load_label(self.root+'/cifar-10.tar.gz', i+1, 'train'), 10)
else:
self.data = self._load_data(self.root+'/cifar-10.tar.gz', i+1, 'test')
self.label = CIFAR10.to_one_hot(self._load_label(self.root+'/cifar-10.tar.gz', i+1, 'test'), 10)
self.data = self.train_data.reshape(-1,3,32,32)
def _load_data(self, filename, idx, data_type='train'):
assert data_type in ['train', 'test']
with tarfile.open(filename, 'r:gz') as file:
for item in file.getmembers():
if ('data_batch_{}'.format(idx) in item.name and data_type == 'train') or ('test_batch' in item.name and data_type == 'test'):
data_dict = pickle.load(file.extractfile(item), encoding='bytes')
if gpu:
import numpy
data = np.asarray(data_dict[b'data'])
else:
data = data_dict[b'data']
return data
def _load_label(self, filename, idx, data_type='train'):
assert data_type in ['train', 'test']
with tarfile.open(filename, 'r:gz') as file:
for item in file.getmembers():
if ('data_batch_{}'.format(idx) in item.name and data_type == 'train') or ('test_batch' in item.name and data_type == 'test'):
data_dict = pickle.load(file.extractfile(item), encoding='bytes')
return np.array(data_dict[b'labels'])
def show(self, row=10, col=10):
H, W = 32, 32
img = np.zeros((H*row, W*col, 3))
for r in range(row):
for c in range(col):
img[r*H:(r+1)*H, c*W:(c+1)*W] = self.data[random.randint(0, len(self.data)-1)].reshape(3,H,W).transpose(1,2,0)/255
plt.imshow(to_cpu(img) if gpu else img, interpolation='nearest')
plt.axis('off')
plt.show()
class CIFAR100(Dataset):
'''CIFAR100 Dataset\n
Args:
train (bool): if True, load training dataset
transforms (transforms): transforms to apply on the features
target_transforms (transforms): transforms to apply on the labels
label_type (str): "fine" label (the class to which it belongs) or "coarse" label (the superclass to which it belongs)
Shape:
- data: [N, 3, 32, 32]
'''
def __init__(self, train=True,
transforms=Compose([ToTensor(), Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])]),
target_transforms=None,
label_type='fine'):
assert label_type in ['fine', 'coarse']
self.label_type = label_type
super().__init__(train, transforms, target_transforms)
def __len__(self):
if self.train:
return 50000
else:
return 10000
def state_dict(self):
if self.label_type == 'fine':
return {
'label_map': cifar100_fine_labels
}
elif self.label_type == 'coarse':
return {
'label_map': cifar100_coarse_labels
}
def prepare(self):
url = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
self._download(url, 'cifar-100.tar.gz')
if self.train:
self.data = self._load_data(self.root+'/cifar-100.tar.gz', 'train')
self.label = CIFAR100.to_one_hot(self._load_label(self.root+'/cifar-100.tar.gz', 'train'), 100 if self.label_type=='fine' else 20)
else:
self.data = self._load_data(self.root+'/cifar-100.tar.gz', 'test')
self.label = CIFAR100.to_one_hot(self._load_label(self.root+'/cifar-100.tar.gz', 'test'), 100 if self.label_type=='fine' else 20)
self.data = self.data.reshape(-1,3,32,32)
def _load_data(self, filename, data_type='train'):
assert data_type in ['train', 'test']
with tarfile.open(filename, 'r:gz') as file:
for item in file.getmembers():
if data_type in item.name:
data_dict = pickle.load(file.extractfile(item), encoding='bytes')
if gpu:
import numpy
data = np.asarray(data_dict[b'data'])
else:
data = data_dict[b'data']
return data
def _load_label(self, filename, data_type='train'):
assert data_type in ['train', 'test']
with tarfile.open(filename, 'r:gz') as file:
for item in file.getmembers():
if data_type in item.name:
data_dict = pickle.load(file.extractfile(item), encoding='bytes')
if self.label_type == 'fine':
return np.array(data_dict[b'fine_labels'])
elif self.label_type == 'coarse':
return np.array(data_dict[b'coarse_labels'])
def show(self, row=10, col=10):
H, W = 32, 32
img = np.zeros((H*row, W*col, 3))
for r in range(row):
for c in range(col):
img[r*H:(r+1)*H, c*W:(c+1)*W] = self.data[random.randint(0, len(self.data)-1)].reshape(3,H,W).transpose(1,2,0)/255
plt.imshow(to_cpu(img) if gpu else img, interpolation='nearest')
plt.axis('off')
plt.show()
cifar10_labels = {
0: 'airplane',
1: 'automobile',
2: 'bird',
3: 'cat',
4: 'deer',
5: 'dog',
6: 'frog',
7: 'horse',
8: 'ship',
9: 'truck'
}
cifar100_fine_labels = dict(enumerate([
'apple',
'aquarium_fish',
'baby',
'bear',
'beaver',
'bed',
'bee',
'beetle',
'bicycle',
'bottle',
'bowl',
'boy',
'bridge',
'bus',
'butterfly',
'camel',
'can',
'castle',
'caterpillar',
'cattle',
'chair',
'chimpanzee',
'clock',
'cloud',
'cockroach',
'couch',
'crab',
'crocodile',
'cup',
'dinosaur',
'dolphin',
'elephant',
'flatfish',
'forest',
'fox',
'girl',
'hamster',
'house',
'kangaroo',
'computer_keyboard',
'lamp',
'lawn_mower',
'leopard',
'lion',
'lizard',
'lobster',
'man',
'maple_tree',
'motorcycle',
'mountain',
'mouse',
'mushroom',
'oak_tree',
'orange',
'orchid',
'otter',
'palm_tree',
'pear',
'pickup_truck',
'pine_tree',
'plain',
'plate',
'poppy',
'porcupine',
'possum',
'rabbit',
'raccoon',
'ray',
'road',
'rocket',
'rose',
'sea',
'seal',
'shark',
'shrew',
'skunk',
'skyscraper',
'snail',
'snake',
'spider',
'squirrel',
'streetcar',
'sunflower',
'sweet_pepper',
'table',
'tank',
'telephone',
'television',
'tiger',
'tractor',
'train',
'trout',
'tulip',
'turtle',
'wardrobe',
'whale',
'willow_tree',
'wolf',
'woman',
'worm'
]))
cifar100_coarse_labels = dict(enumerate([
'aquatic mammals',
'fish',
'flowers',
'food containers',
'fruit and vegetables',
'household electrical device',
'household furniture',
'insects',
'large carnivores',
'large man-made outdoor things',
'large natural outdoor scenes',
'large omnivores and herbivores',
'medium-sized mammals',
'non-insect invertebrates',
'people',
'reptiles',
'small mammals',
'trees',
'vehicles 1',
'vehicles 2'
]))