-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathfixmatch.py
112 lines (92 loc) · 3.97 KB
/
fixmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
from torch.nn import functional as F
from dassl.data import DataManager
from dassl.engine import TRAINER_REGISTRY, TrainerXU
from dassl.metrics import compute_accuracy
from dassl.data.transforms import build_transform
@TRAINER_REGISTRY.register()
class FixMatch(TrainerXU):
"""FixMatch: Simplifying Semi-Supervised Learning with
Consistency and Confidence.
https://arxiv.org/abs/2001.07685.
"""
def __init__(self, cfg):
super().__init__(cfg)
self.weight_u = cfg.TRAINER.FIXMATCH.WEIGHT_U
self.conf_thre = cfg.TRAINER.FIXMATCH.CONF_THRE
def check_cfg(self, cfg):
assert len(cfg.TRAINER.FIXMATCH.STRONG_TRANSFORMS) > 0
def build_data_loader(self):
cfg = self.cfg
tfm_train = build_transform(cfg, is_train=True)
custom_tfm_train = [tfm_train]
choices = cfg.TRAINER.FIXMATCH.STRONG_TRANSFORMS
tfm_train_strong = build_transform(cfg, is_train=True, choices=choices)
custom_tfm_train += [tfm_train_strong]
self.dm = DataManager(self.cfg, custom_tfm_train=custom_tfm_train)
self.train_loader_x = self.dm.train_loader_x
self.train_loader_u = self.dm.train_loader_u
self.val_loader = self.dm.val_loader
self.test_loader = self.dm.test_loader
self.num_classes = self.dm.num_classes
def assess_y_pred_quality(self, y_pred, y_true, mask):
n_masked_correct = (y_pred.eq(y_true).float() * mask).sum()
acc_thre = n_masked_correct / (mask.sum() + 1e-5)
acc_raw = y_pred.eq(y_true).sum() / y_pred.numel() # raw accuracy
keep_rate = mask.sum() / mask.numel()
output = {
"acc_thre": acc_thre,
"acc_raw": acc_raw,
"keep_rate": keep_rate
}
return output
def forward_backward(self, batch_x, batch_u):
parsed_data = self.parse_batch_train(batch_x, batch_u)
input_x, input_x2, label_x, input_u, input_u2, label_u = parsed_data
input_u = torch.cat([input_x, input_u], 0)
input_u2 = torch.cat([input_x2, input_u2], 0)
n_x = input_x.size(0)
# Generate pseudo labels
with torch.no_grad():
output_u = F.softmax(self.model(input_u), 1)
max_prob, label_u_pred = output_u.max(1)
mask_u = (max_prob >= self.conf_thre).float()
# Evaluate pseudo labels' accuracy
y_u_pred_stats = self.assess_y_pred_quality(
label_u_pred[n_x:], label_u, mask_u[n_x:]
)
# Supervised loss
output_x = self.model(input_x)
loss_x = F.cross_entropy(output_x, label_x)
# Unsupervised loss
output_u = self.model(input_u2)
loss_u = F.cross_entropy(output_u, label_u_pred, reduction="none")
loss_u = (loss_u * mask_u).mean()
loss = loss_x + loss_u * self.weight_u
self.model_backward_and_update(loss)
loss_summary = {
"loss_x": loss_x.item(),
"acc_x": compute_accuracy(output_x, label_x)[0].item(),
"loss_u": loss_u.item(),
"y_u_pred_acc_raw": y_u_pred_stats["acc_raw"],
"y_u_pred_acc_thre": y_u_pred_stats["acc_thre"],
"y_u_pred_keep": y_u_pred_stats["keep_rate"],
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch_x, batch_u):
input_x = batch_x["img"]
input_x2 = batch_x["img2"]
label_x = batch_x["label"]
input_u = batch_u["img"]
input_u2 = batch_u["img2"]
# label_u is used only for evaluating pseudo labels' accuracy
label_u = batch_u["label"]
input_x = input_x.to(self.device)
input_x2 = input_x2.to(self.device)
label_x = label_x.to(self.device)
input_u = input_u.to(self.device)
input_u2 = input_u2.to(self.device)
label_u = label_u.to(self.device)
return input_x, input_x2, label_x, input_u, input_u2, label_u