-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathcrossgrad.py
83 lines (64 loc) · 2.86 KB
/
crossgrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from torch.nn import functional as F
from dassl.optim import build_optimizer, build_lr_scheduler
from dassl.utils import count_num_param
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.engine.trainer import SimpleNet
@TRAINER_REGISTRY.register()
class CrossGrad(TrainerX):
"""Cross-gradient training.
https://arxiv.org/abs/1804.10745.
"""
def __init__(self, cfg):
super().__init__(cfg)
self.eps_f = cfg.TRAINER.CROSSGRAD.EPS_F
self.eps_d = cfg.TRAINER.CROSSGRAD.EPS_D
self.alpha_f = cfg.TRAINER.CROSSGRAD.ALPHA_F
self.alpha_d = cfg.TRAINER.CROSSGRAD.ALPHA_D
def build_model(self):
cfg = self.cfg
print("Building F")
self.F = SimpleNet(cfg, cfg.MODEL, self.num_classes)
self.F.to(self.device)
print("# params: {:,}".format(count_num_param(self.F)))
self.optim_F = build_optimizer(self.F, cfg.OPTIM)
self.sched_F = build_lr_scheduler(self.optim_F, cfg.OPTIM)
self.register_model("F", self.F, self.optim_F, self.sched_F)
print("Building D")
self.D = SimpleNet(cfg, cfg.MODEL, self.num_source_domains)
self.D.to(self.device)
print("# params: {:,}".format(count_num_param(self.D)))
self.optim_D = build_optimizer(self.D, cfg.OPTIM)
self.sched_D = build_lr_scheduler(self.optim_D, cfg.OPTIM)
self.register_model("D", self.D, self.optim_D, self.sched_D)
def forward_backward(self, batch):
input, label, domain = self.parse_batch_train(batch)
input.requires_grad = True
# Compute domain perturbation
loss_d = F.cross_entropy(self.D(input), domain)
loss_d.backward()
grad_d = torch.clamp(input.grad.data, min=-0.1, max=0.1)
input_d = input.data + self.eps_f * grad_d
# Compute label perturbation
input.grad.data.zero_()
loss_f = F.cross_entropy(self.F(input), label)
loss_f.backward()
grad_f = torch.clamp(input.grad.data, min=-0.1, max=0.1)
input_f = input.data + self.eps_d * grad_f
input = input.detach()
# Update label net
loss_f1 = F.cross_entropy(self.F(input), label)
loss_f2 = F.cross_entropy(self.F(input_d), label)
loss_f = (1 - self.alpha_f) * loss_f1 + self.alpha_f * loss_f2
self.model_backward_and_update(loss_f, "F")
# Update domain net
loss_d1 = F.cross_entropy(self.D(input), domain)
loss_d2 = F.cross_entropy(self.D(input_f), domain)
loss_d = (1 - self.alpha_d) * loss_d1 + self.alpha_d * loss_d2
self.model_backward_and_update(loss_d, "D")
loss_summary = {"loss_f": loss_f.item(), "loss_d": loss_d.item()}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def model_inference(self, input):
return self.F(input)