-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_utils.py
906 lines (769 loc) · 38.8 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
from text2num import text2num, NumberException
from collections import Counter, defaultdict, OrderedDict
from nltk import sent_tokenize
from utils import logger
import numpy as np
import argparse
import random
import codecs
import pprint
import tqdm
import json
import math
import h5py
import os
random.seed(2)
pp = pprint.PrettyPrinter(indent=2)
prons = {"he", "He", "him", "Him", "his", "His", "they", "They", "them", "Them", "their", "Their"} # leave out "it"
singular_prons = {"he", "He", "him", "Him", "his", "His"}
plural_prons = {"they", "They", "them", "Them", "their", "Their"}
number_words = {"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve",
"thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty", "thirty",
"forty", "fifty", "sixty", "seventy", "eighty", "ninety", "hundred", "thousand"}
# ordering the relations correctly
class DefaultListOrderedDict(OrderedDict):
def __missing__(self,k):
self[k] = []
return self[k]
def get_ents(dat):
players = set()
teams = set()
cities = set()
for thing in dat:
teams.add(thing["vis_name"])
teams.add(thing["vis_line"]["TEAM-NAME"])
teams.add(thing["vis_city"] + " " + thing["vis_name"])
teams.add(thing["vis_city"] + " " + thing["vis_line"]["TEAM-NAME"])
teams.add(thing["home_name"])
teams.add(thing["home_line"]["TEAM-NAME"])
teams.add(thing["home_city"] + " " + thing["home_name"])
teams.add(thing["home_city"] + " " + thing["home_line"]["TEAM-NAME"])
# special case for this
if thing["vis_city"] == "Los Angeles":
teams.add("LA" + thing["vis_name"])
if thing["home_city"] == "Los Angeles":
teams.add("LA" + thing["home_name"])
# sometimes team_city is different
cities.add(thing["home_city"])
cities.add(thing["vis_city"])
players.update(thing["box_score"]["PLAYER_NAME"].values())
cities.update(thing["box_score"]["TEAM_CITY"].values())
for entset in [players, teams, cities]:
for k in list(entset):
pieces = k.split()
if len(pieces) > 1:
for piece in pieces:
if len(piece) > 1 and piece not in ["II", "III", "Jr.", "Jr"]:
entset.add(piece)
all_ents = players | teams | cities
return all_ents, players, teams, cities
def deterministic_resolve(pron, players, teams, cities, curr_ents, prev_ents, max_back=1):
# we'll just take closest compatible one.
# first look in current sentence; if there's an antecedent here return None, since
# we'll catch it anyway
for j in range(len(curr_ents)-1, -1, -1):
if pron in singular_prons and curr_ents[j][2] in players:
return None
elif pron in plural_prons and curr_ents[j][2] in teams:
return None
elif pron in plural_prons and curr_ents[j][2] in cities:
return None
# then look in previous max_back sentences
if len(prev_ents) > 0:
for i in range(len(prev_ents)-1, len(prev_ents)-1-max_back, -1):
for j in range(len(prev_ents[i])-1, -1, -1):
if pron in singular_prons and prev_ents[i][j][2] in players:
return prev_ents[i][j]
elif pron in plural_prons and prev_ents[i][j][2] in teams:
return prev_ents[i][j]
elif pron in plural_prons and prev_ents[i][j][2] in cities:
return prev_ents[i][j]
return None
def extract_entities(sent, all_ents, prons, prev_ents=None, resolve_prons=False,
players=None, teams=None, cities=None):
sent_ents = []
i = 0
while i < len(sent):
if sent[i] in prons:
if resolve_prons:
referent = deterministic_resolve(sent[i], players, teams, cities, sent_ents, prev_ents)
if referent is None:
sent_ents.append((i, i+1, sent[i], True)) # is a pronoun
else:
#print "replacing", sent[i], "with", referent[2], "in", " ".join(sent)
sent_ents.append((i, i+1, referent[2], False)) # pretend it's not a pron and put in matching string
else:
sent_ents.append((i, i+1, sent[i], True)) # is a pronoun
i += 1
elif sent[i] in all_ents: # findest longest spans; only works if we put in words...
j = 1
while i+j <= len(sent) and " ".join(sent[i:i+j]) in all_ents:
j += 1
sent_ents.append((i, i+j-1, " ".join(sent[i:i+j-1]), False))
i += j-1
else:
i += 1
return sent_ents
# fixing bug of number words handling
def annoying_number_word(sent, i):
ignores = set(["three point", "three - point", "three - pt", "three pt", "three - pointers", "three - pointer", "three pointers"])
return " ".join(sent[i:i + 3]) in ignores or " ".join(sent[i:i + 2]) in ignores
def extract_numbers(sent):
sent_nums = []
i = 0
ignores = {"three point", "three-point", "three-pt", "three pt"}
while i < len(sent):
toke = sent[i]
a_number = False
try:
itoke = int(toke)
a_number = True
except ValueError:
pass
if a_number:
sent_nums.append((i, i+1, int(toke)))
i += 1
elif toke in number_words and not annoying_number_word(sent, i): # get longest span (this is kind of stupid)
j = 1
while i+j < len(sent) and sent[i+j] in number_words and not annoying_number_word(sent, i+j):
j += 1
try:
sent_nums.append((i, i+j, text2num(" ".join(sent[i:i+j]))))
except NumberException:
pass
# print(sent)
# print(sent[i:i+j])
# assert False
i += j
else:
i += 1
return sent_nums
def get_player_idx(bs, entname):
keys = []
for k, v in bs["PLAYER_NAME"].items():
if entname == v:
keys.append(k)
if len(keys) == 0:
for k,v in bs["SECOND_NAME"].items():
if entname == v:
keys.append(k)
if len(keys) > 1: # take the earliest one
keys.sort(key = lambda x: int(x))
keys = keys[:1]
if len(keys) == 0:
for k,v in bs["FIRST_NAME"].items():
if entname == v:
keys.append(k)
if len(keys) > 1: # if we matched on first name and there are a bunch just forget about it
return None
assert len(keys) <= 1, entname + " : " + str(bs["PLAYER_NAME"].values())
return keys[0] if len(keys) > 0 else None
def get_rels(entry, ents, nums, players, teams, cities):
"""
this looks at the box/line score and figures out which (entity, number) pairs
are candidate true relations, and which can't be.
if an ent and number don't line up (i.e., aren't in the box/line score together),
we give a NONE label, so for generated summaries that we extract from, if we predict
a label we'll get it wrong (which is presumably what we want).
N.B. this function only looks at the entity string (not position in sentence), so the
string a pronoun corefers with can be snuck in....
"""
rels = []
bs = entry["box_score"]
for i, ent in enumerate(ents):
if ent[3]: # pronoun
continue # for now
entname = ent[2]
# assume if a player has a city or team name as his name, they won't use that one (e.g., Orlando Johnson)
if entname in players and entname not in cities and entname not in teams:
pidx = get_player_idx(bs, entname)
for j, numtup in enumerate(nums):
found = False
strnum = str(numtup[2])
if pidx is not None: # player might not actually be in the game or whatever
for colname, col in bs.items():
if col[pidx] == strnum: # allow multiple for now
rels.append((ent, numtup, "PLAYER-" + colname, pidx))
found = True
if not found:
rels.append((ent, numtup, "NONE", None))
else: # has to be city or team
entpieces = entname.split()
linescore = None
is_home = None
if entpieces[0] in entry["home_city"] or entpieces[-1] in entry["home_name"]:
linescore = entry["home_line"]
is_home = True
elif entpieces[0] in entry["vis_city"] or entpieces[-1] in entry["vis_name"]:
linescore = entry["vis_line"]
is_home = False
elif "LA" in entpieces[0]:
if entry["home_city"] == "Los Angeles":
linescore = entry["home_line"]
is_home = True
elif entry["vis_city"] == "Los Angeles":
linescore = entry["vis_line"]
is_home = False
for j, numtup in enumerate(nums):
found = False
strnum = str(numtup[2])
if linescore is not None:
for colname, val in linescore.items():
if val == strnum:
#rels.append((ent, numtup, "TEAM-" + colname, is_home))
# apparently I appended TEAM- at some pt...
rels.append((ent, numtup, colname, is_home))
found = True
if not found:
rels.append((ent, numtup, "NONE", None)) # should i specialize the NONE labels too?
rels.sort(key=lambda rel: rel[1][0])
return rels
def append_candidate_rels(entry, spans, summ, all_ents, prons, players, teams, cities, candrels):
"""
appends tuples of form (sentence_tokens, [rels]) to candrels
"""
# CT
# spans are arbitrary sequences of tokens (as far as system is concerned)
# these were originally sents (sentences), but so that we can also do clause level,
# we call them spans.
# If 'spans' is not present in the JSON (as in orginal Rotowire format) create them from the summary
if spans == None:
spans = sent_tokenize(summ)
# CT - changed from sents to spans
for j, span in enumerate(spans):
tokes = span.split()
ents = extract_entities(tokes, all_ents, prons)
nums = extract_numbers(tokes)
rels = get_rels(entry, ents, nums, players, teams, cities)
if len(rels) > 0:
candrels.append((tokes, rels))
return candrels
def get_datasets(path="../boxscore-data/rotowire"):
logger.info(f'Loading training data from {path}')
with codecs.open(os.path.join(path, "train.json"), "r", "utf-8") as f:
trdata = json.load(f)
all_ents, players, teams, cities = get_ents(trdata)
with codecs.open(os.path.join(path, "valid.json"), "r", "utf-8") as f:
valdata = json.load(f)
with codecs.open(os.path.join(path, "test.json"), "r", "utf-8") as f:
testdata = json.load(f)
logger.info('Data loaded.')
extracted_stuff = []
datasets = [['train', trdata], ['validation', valdata], ['test', testdata]]
for dname, dataset in datasets:
nugz = []
iterable = enumerate(dataset)
for i, entry in tqdm.tqdm(iterable, total=len(dataset), desc=f'Parsing {dname}'):
# CT - Pickup the sliced data span based tokenization if present
summ = " ".join(entry['summary'])
spans = entry['spans'] if 'spans' in entry else None
append_candidate_rels(entry, spans, summ, all_ents, prons, players, teams, cities, nugz)
extracted_stuff.append(nugz)
del all_ents
del players
del teams
del cities
return extracted_stuff
def append_to_data(tup, sents, lens, entdists, numdists, labels, vocab, labeldict, max_len):
"""
tup is (sent, [rels]);
each rel is ((ent_start, ent_ent, ent_str), (num_start, num_end, num_str), label)
"""
sent = [vocab[wrd] if wrd in vocab else vocab["UNK"] for wrd in tup[0]]
sentlen = len(sent)
sent.extend([-1] * (max_len - sentlen))
for rel in tup[1]:
ent, num, label, idthing = rel
sents.append(sent)
lens.append(sentlen)
ent_dists = [j-ent[0] if j < ent[0] else j - ent[1] + 1 if j >= ent[1] else 0 for j in range(max_len)]
entdists.append(ent_dists)
num_dists = [j-num[0] if j < num[0] else j - num[1] + 1 if j >= num[1] else 0 for j in range(max_len)]
numdists.append(num_dists)
labels.append(labeldict[label])
def append_multilabeled_data(tup, sents, lens, entdists, numdists, labels, vocab, labeldict, max_len):
"""
used for val, since we have contradictory labelings...
tup is (sent, [rels]);
each rel is ((ent_start, ent_end, ent_str), (num_start, num_end, num_str), label)
"""
sent = [vocab[wrd] if wrd in vocab else vocab["UNK"] for wrd in tup[0]]
sentlen = len(sent)
sent.extend([-1] * (max_len - sentlen))
# get all the labels for the same rel
unique_rels = DefaultListOrderedDict()
for rel in tup[1]:
ent, num, label, idthing = rel
unique_rels[ent, num].append(label)
for rel, label_list in unique_rels.items():
ent, num = rel
sents.append(sent)
lens.append(sentlen)
ent_dists = [j-ent[0] if j < ent[0] else j - ent[1] + 1 if j >= ent[1] else 0 for j in range(max_len)]
entdists.append(ent_dists)
num_dists = [j-num[0] if j < num[0] else j - num[1] + 1 if j >= num[1] else 0 for j in range(max_len)]
numdists.append(num_dists)
labels.append([labeldict[label] for label in label_list])
def append_labelnums(labels):
labelnums = [len(labellist) for labellist in labels]
max_num_labels = max(labelnums)
logger.info(f"max num labels: {max_num_labels}")
# append number of labels to labels
for i, labellist in enumerate(labels):
labellist.extend([-1]*(max_num_labels - len(labellist)))
labellist.append(labelnums[i])
# for full sentence IE training
def save_full_sent_data(outfile, path="../boxscore-data/rotowire", multilabel_train=False, nonedenom=0):
datasets = get_datasets(path)
# make vocab and get labels
word_counter = Counter()
[word_counter.update(tup[0]) for tup in datasets[0]]
# CT - changed this to a comprehension
word_counter = {k: v for k, v in word_counter.items() if v > 1}
# for k in word_counter.keys():
# if word_counter[k] < 2:
# del word_counter[k]
word_counter["UNK"] = 1
vocab = dict(((wrd, i+1) for i, wrd in enumerate(word_counter.keys())))
labelset = set()
[labelset.update([rel[2] for rel in tup[1]]) for tup in datasets[0]]
labeldict = dict(((label, i+1) for i, label in enumerate(sorted(labelset))))
# save stuff
trsents, trlens, trentdists, trnumdists, trlabels = [], [], [], [], []
valsents, vallens, valentdists, valnumdists, vallabels = [], [], [], [], []
testsents, testlens, testentdists, testnumdists, testlabels = [], [], [], [], []
max_trlen = max((len(tup[0]) for tup in datasets[0]))
print("max tr sentence length:", max_trlen)
# do training data
for tup in tqdm.tqdm(datasets[0], desc='Building training examples'):
if multilabel_train:
append_multilabeled_data(tup, trsents, trlens, trentdists, trnumdists, trlabels, vocab, labeldict, max_trlen)
else:
append_to_data(tup, trsents, trlens, trentdists, trnumdists, trlabels, vocab, labeldict, max_trlen)
if multilabel_train:
append_labelnums(trlabels)
if nonedenom > 0:
# don't keep all the NONE labeled things
none_idxs = [i for i, labellist in enumerate(trlabels) if labellist[0] == labeldict["NONE"]]
random.shuffle(none_idxs)
# allow at most 1/(nonedenom+1) of NONE-labeled
num_to_keep = int(math.floor(float(len(trlabels)-len(none_idxs))/nonedenom))
print("originally", len(trlabels), "training examples")
print("keeping", num_to_keep, "NONE-labeled examples")
ignore_idxs = set(none_idxs[num_to_keep:])
# get rid of most of the NONE-labeled examples
trsents = [thing for i,thing in enumerate(trsents) if i not in ignore_idxs]
trlens = [thing for i,thing in enumerate(trlens) if i not in ignore_idxs]
trentdists = [thing for i,thing in enumerate(trentdists) if i not in ignore_idxs]
trnumdists = [thing for i,thing in enumerate(trnumdists) if i not in ignore_idxs]
trlabels = [thing for i,thing in enumerate(trlabels) if i not in ignore_idxs]
logger.info(f'{len(trsents)} training examples')
# do val, which we also consider multilabel
max_vallen = max((len(tup[0]) for tup in datasets[1]))
for tup in tqdm.tqdm(datasets[1], desc='Building validation examples'):
#append_to_data(tup, valsents, vallens, valentdists, valnumdists, vallabels, vocab, labeldict, max_len)
append_multilabeled_data(tup, valsents, vallens, valentdists, valnumdists, vallabels, vocab, labeldict, max_vallen)
append_labelnums(vallabels)
logger.info(f'{len(valsents)} validation examples')
# do test, which we also consider multilabel
max_testlen = max((len(tup[0]) for tup in datasets[2]))
for tup in tqdm.tqdm(datasets[2], desc='Building test examples'):
#append_to_data(tup, valsents, vallens, valentdists, valnumdists, vallabels, vocab, labeldict, max_len)
append_multilabeled_data(tup, testsents, testlens, testentdists, testnumdists, testlabels, vocab, labeldict, max_testlen)
append_labelnums(testlabels)
logger.info(f'{len(testsents)} test examples')
logger.info(f'Serializing data to {outfile}')
h5fi = h5py.File(outfile, "w")
h5fi["trsents"] = np.array(trsents, dtype=int)
h5fi["trlens"] = np.array(trlens, dtype=int)
h5fi["trentdists"] = np.array(trentdists, dtype=int)
h5fi["trnumdists"] = np.array(trnumdists, dtype=int)
h5fi["trlabels"] = np.array(trlabels, dtype=int)
h5fi["valsents"] = np.array(valsents, dtype=int)
h5fi["vallens"] = np.array(vallens, dtype=int)
h5fi["valentdists"] = np.array(valentdists, dtype=int)
h5fi["valnumdists"] = np.array(valnumdists, dtype=int)
h5fi["vallabels"] = np.array(vallabels, dtype=int)
#h5fi.close()
#h5fi = h5py.File("test-" + outfile, "w")
h5fi["testsents"] = np.array(testsents, dtype=int)
h5fi["testlens"] = np.array(testlens, dtype=int)
h5fi["testentdists"] = np.array(testentdists, dtype=int)
h5fi["testnumdists"] = np.array(testnumdists, dtype=int)
h5fi["testlabels"] = np.array(testlabels, dtype=int)
h5fi.close()
## h5fi["vallabelnums"] = np.array(vallabelnums, dtype=int)
## h5fi.close()
# write dicts
revvocab = dict(((v,k) for k,v in vocab.items()))
revlabels = dict(((v,k) for k,v in labeldict.items()))
with codecs.open(outfile.split('.')[0] + ".dict", "w+", "utf-8") as f:
for i in range(1, len(revvocab)+1):
f.write("%s %d \n" % (revvocab[i], i))
with codecs.open(outfile.split('.')[0] + ".labels", "w+", "utf-8") as f:
for i in range(1, len(revlabels)+1):
f.write("%s %d \n" % (revlabels[i], i))
logger.info('Done.')
def prep_generated_data(genfile, dict_pfx, outfile, path="../boxscore-data/rotowire", test=False):
# recreate vocab and labeldict
logger.info('Loading vocabulary')
vocab = dict()
with codecs.open(dict_pfx+".dict", "r", "utf-8") as f:
for line in f:
pieces = line.strip().split()
vocab[pieces[0]] = int(pieces[1])
labeldict = dict()
with codecs.open(dict_pfx+".labels", "r", "utf-8") as f:
for line in f:
pieces = line.strip().split()
labeldict[pieces[0]] = int(pieces[1])
logger.info(f'Loading descriptions to be evaluated from: {genfile}')
with codecs.open(genfile, "r", "utf-8") as f:
gens = f.readlines()
with codecs.open(os.path.join(path, "train.json"), "r", "utf-8") as f:
trdata = json.load(f)
all_ents, players, teams, cities = get_ents(trdata)
valfi = "test.json" if test else "valid.json"
sname = "test" if test else "validation"
with codecs.open(os.path.join(path, valfi), "r", "utf-8") as f:
logger.info(f'Loading corresponding {sname} inputs (from: {valfi})')
evaldata = json.load(f)
assert len(evaldata) == len(gens), f'{len(evaldata)=} vs {len(gens)=}'
logger.info('Vocabulary and data loaded.')
nugz = list() # to hold (sentence_tokens, [rels]) tuples
sent_reset_indices = {0} # sentence indices where a box/story is reset
for i, entry in tqdm.tqdm(enumerate(evaldata), total=len(evaldata), desc='parsing descriptions'):
# CT - TODO - refactor this creation of summ, spans, tokens etc.
summ = gens[i]
spans = None
append_candidate_rels(entry, spans, summ, all_ents, prons, players, teams, cities, nugz)
sent_reset_indices.add(len(nugz))
# save stuff
max_len = max((len(tup[0]) for tup in nugz))
psents, plens, pentdists, pnumdists, plabels = [], [], [], [], []
rel_reset_indices = []
for t, tup in tqdm.tqdm(enumerate(nugz), total=len(nugz), desc="Creating evaluation examples"):
if t in sent_reset_indices: # then last rel is the last of its box
assert len(psents) == len(plabels)
rel_reset_indices.append(len(psents))
append_multilabeled_data(tup, psents, plens, pentdists, pnumdists, plabels, vocab, labeldict, max_len)
append_labelnums(plabels)
logger.info(f'{len(psents)} prediction examples')
logger.info(f'Serializing evaluation examples to: {outfile}')
h5fi = h5py.File(outfile, "w")
h5fi["valsents"] = np.array(psents, dtype=int)
h5fi["vallens"] = np.array(plens, dtype=int)
h5fi["valentdists"] = np.array(pentdists, dtype=int)
h5fi["valnumdists"] = np.array(pnumdists, dtype=int)
h5fi["vallabels"] = np.array(plabels, dtype=int)
h5fi["boxrestartidxs"] = np.array(np.array(rel_reset_indices)+1, dtype=int) # 1-indexed
h5fi.close()
logger.info('All done.')
################################################################################
bs_keys = ["PLAYER-PLAYER_NAME", "PLAYER-START_POSITION", "PLAYER-MIN",
"PLAYER-PTS", "PLAYER-FGM", "PLAYER-FGA", "PLAYER-FG_PCT",
"PLAYER-FG3M", "PLAYER-FG3A", "PLAYER-FG3_PCT", "PLAYER-FTM",
"PLAYER-FTA", "PLAYER-FT_PCT", "PLAYER-OREB", "PLAYER-DREB",
"PLAYER-REB", "PLAYER-AST", "PLAYER-TO", "PLAYER-STL", "PLAYER-BLK",
"PLAYER-PF", "PLAYER-FIRST_NAME", "PLAYER-SECOND_NAME"]
ls_keys = ["TEAM-PTS_QTR1", "TEAM-PTS_QTR2", "TEAM-PTS_QTR3", "TEAM-PTS_QTR4",
"TEAM-PTS", "TEAM-FG_PCT", "TEAM-FG3_PCT", "TEAM-FT_PCT", "TEAM-REB",
"TEAM-AST", "TEAM-TOV", "TEAM-WINS", "TEAM-LOSSES", "TEAM-CITY",
"TEAM-NAME"]
NUM_PLAYERS = 13
def get_player_idxs(entry):
nplayers = 0
home_players, vis_players = [], []
for k,v in entry["box_score"]["PTS"].items():
nplayers += 1
num_home, num_vis = 0, 0
for i in range(nplayers):
player_city = entry["box_score"]["TEAM_CITY"][str(i)]
if player_city == entry["home_city"]:
if len(home_players) < NUM_PLAYERS:
home_players.append(str(i))
num_home += 1
else:
if len(vis_players) < NUM_PLAYERS:
vis_players.append(str(i))
num_vis += 1
return home_players, vis_players
def box_preproc2(trdata):
"""
just gets src for now
"""
srcs = [[] for i in range(2*NUM_PLAYERS+2)]
for entry in trdata:
home_players, vis_players = get_player_idxs(entry)
for ii, player_list in enumerate([home_players, vis_players]):
for j in range(NUM_PLAYERS):
src_j = []
player_key = player_list[j] if j < len(player_list) else None
for k, key in enumerate(bs_keys):
rulkey = key.split('-')[1]
val = entry["box_score"][rulkey][player_key] if player_key is not None else "N/A"
src_j.append(val)
srcs[ii*NUM_PLAYERS + j].append(src_j)
home_src, vis_src = [], []
for k in range(len(bs_keys) - len(ls_keys)):
home_src.append("PAD")
vis_src.append("PAD")
for k, key in enumerate(ls_keys):
home_src.append(entry["home_line"][key])
vis_src.append(entry["vis_line"][key])
srcs[-2].append(home_src)
srcs[-1].append(vis_src)
return srcs
def linearized_preproc(srcs):
"""
maps from a num-rows length list of lists of ntrain to an
ntrain-length list of concatenated rows
"""
lsrcs = []
for i in range(len(srcs[0])):
src_i = []
for j in range(len(srcs)):
src_i.extend(srcs[j][i][1:]) # b/c in lua we ignore first thing
lsrcs.append(src_i)
return lsrcs
def fix_target_idx(summ, assumed_idx, word, neighborhood=5):
"""
tokenization can mess stuff up, so look around
"""
for i in range(1, neighborhood+1):
if assumed_idx + i < len(summ) and summ[assumed_idx + i] == word:
return assumed_idx + i
elif assumed_idx - i >= 0 and assumed_idx - i < len(summ) and summ[assumed_idx - i] == word:
return assumed_idx - i
return None
# for each target word want to know where it could've been copied from
def make_pointerfi(outfi, inp_file="rotowire/train.json", resolve_prons=False):
"""
N.B. this function only looks at string equality in determining pointerness.
this means that if we sneak in pronoun strings as their referents, we won't point to the
pronoun if the referent appears in the table; we may use this tho to point to the correct number
"""
with codecs.open(inp_file, "r", "utf-8") as f:
trdata = json.load(f)
rulsrcs = linearized_preproc(box_preproc2(trdata))
all_ents, players, teams, cities = get_ents(trdata)
skipped = 0
train_links = []
for i, entry in enumerate(trdata):
home_players, vis_players = get_player_idxs(entry)
inv_home_players = {pkey: jj for jj, pkey in enumerate(home_players)}
inv_vis_players = {pkey: (jj + NUM_PLAYERS) for jj, pkey in enumerate(vis_players)}
# CT - see comment above on spans, sents and summary
summ = " ".join(entry['summary'])
spans = entry['spans'] if 'spans' in entry else None
# If there are no spans from the JSON file (original Rotowire format) create from summary
if spans == None:
spans = sent_tokenize(summ)
words_so_far = 0
links = []
prev_ents = []
for j, span in enumerate(spans):
# tokes = word_tokenize(span) # just assuming this gives me back original tokenization
# CT - in all cases, should be able to split by whitespace to get tokens (Wiseman did this elsewhere too)
tokes = span.split()
ents = extract_entities(tokes, all_ents, prons, prev_ents, resolve_prons,
players, teams, cities)
if resolve_prons:
prev_ents.append(ents)
nums = extract_numbers(tokes)
# should return a list of (enttup, numtup, rel-name, identifier) for each rel licensed by the table
rels = get_rels(entry, ents, nums, players, teams, cities)
for (enttup, numtup, label, idthing) in rels:
if label != 'NONE':
# try to find corresponding words (for both ents and nums)
ent_start, ent_end, entspan, _ = enttup
num_start, num_end, numspan = numtup
if isinstance(idthing, bool): # city or team
# get entity indices if any
for k, word in enumerate(tokes[ent_start:ent_end]):
src_idx = None
if word == entry["home_name"]:
src_idx = (2*NUM_PLAYERS+1)*(len(bs_keys)-1) -1 # last thing
elif word == entry["home_city"]:
src_idx = (2*NUM_PLAYERS+1)*(len(bs_keys)-1) -2 # second to last thing
elif word == entry["vis_name"]:
src_idx = (2*NUM_PLAYERS+2)*(len(bs_keys)-1) -1 # last thing
elif word == entry["vis_city"]:
src_idx = (2*NUM_PLAYERS+2)*(len(bs_keys)-1) -2 # second to last thing
if src_idx is not None:
targ_idx = words_so_far + ent_start + k
if targ_idx >= len(entry["summary"]) or entry["summary"][targ_idx] != word:
targ_idx = fix_target_idx(entry["summary"], targ_idx, word)
#print word, rulsrcs[i][src_idx], entry["summary"][words_so_far + ent_start + k]
if targ_idx is None:
skipped += 1
else:
assert rulsrcs[i][src_idx] == word and entry["summary"][targ_idx] == word
links.append((src_idx, targ_idx)) # src_idx, target_idx
# get num indices if any
for k, word in enumerate(tokes[num_start:num_end]):
src_idx = None
if idthing: # home, so look in the home row
if entry["home_line"][label] == word:
col_idx = ls_keys.index(label)
src_idx = 2*NUM_PLAYERS*(len(bs_keys)-1)+ len(bs_keys)-len(ls_keys) + col_idx -1 # -1 b/c we trim first col
else:
if entry["vis_line"][label] == word:
col_idx = ls_keys.index(label)
src_idx = (2*NUM_PLAYERS+1)*(len(bs_keys)-1)+ len(bs_keys)-len(ls_keys) + col_idx - 1
if src_idx is not None:
targ_idx = words_so_far + num_start + k
if targ_idx >= len(entry["summary"]) or entry["summary"][targ_idx] != word:
targ_idx = fix_target_idx(entry["summary"], targ_idx, word)
#print word, rulsrcs[i][src_idx], entry["summary"][words_so_far + num_start + k]
if targ_idx is None:
skipped += 1
else:
assert rulsrcs[i][src_idx] == word and entry["summary"][targ_idx] == word
links.append((src_idx, targ_idx))
else: # players
# get row corresponding to this player
player_row = None
if idthing in inv_home_players:
player_row = inv_home_players[idthing]
elif idthing in inv_vis_players:
player_row = inv_vis_players[idthing]
if player_row is not None:
# ent links
for k, word in enumerate(tokes[ent_start:ent_end]):
src_idx = None
if word == entry["box_score"]["FIRST_NAME"][idthing]:
src_idx = (player_row+1)*(len(bs_keys)-1) -2 # second to last thing
elif word == entry["box_score"]["SECOND_NAME"][idthing]:
src_idx = (player_row+1)*(len(bs_keys)-1) -1 # last thing
if src_idx is not None:
targ_idx = words_so_far + ent_start + k
if entry["summary"][targ_idx] != word:
targ_idx = fix_target_idx(entry["summary"], targ_idx, word)
if targ_idx is None:
skipped += 1
else:
assert rulsrcs[i][src_idx] == word and entry["summary"][targ_idx] == word
links.append((src_idx, targ_idx)) # src_idx, target_idx
# num links
for k, word in enumerate(tokes[num_start:num_end]):
src_idx = None
if word == entry["box_score"][label.split('-')[1]][idthing]:
src_idx = player_row*(len(bs_keys)-1) + bs_keys.index(label)-1 # subtract 1 because we ignore first col
if src_idx is not None:
targ_idx = words_so_far + num_start + k
if targ_idx >= len(entry["summary"]) or entry["summary"][targ_idx] != word:
targ_idx = fix_target_idx(entry["summary"], targ_idx, word)
#print word, rulsrcs[i][src_idx], entry["summary"][words_so_far + num_start + k]
if targ_idx is None:
skipped += 1
else:
assert rulsrcs[i][src_idx] == word and entry["summary"][targ_idx] == word
links.append((src_idx, targ_idx))
words_so_far += len(tokes)
train_links.append(links)
print("SKIPPED", skipped)
# collapse multiple links
trlink_dicts = []
for links in train_links:
links_dict = defaultdict(list)
[links_dict[targ_idx].append(src_idx) for src_idx, targ_idx in links]
trlink_dicts.append(links_dict)
# write in fmt:
# targ_idx,src_idx1[,src_idx...]
with open(outfi, "w+") as f:
for links_dict in trlink_dicts:
targ_idxs = sorted(links_dict.keys())
fmtd = [",".join([str(targ_idx)]+[str(thing) for thing in set(links_dict[targ_idx])])
for targ_idx in targ_idxs]
f.write("%s\n" % " ".join(fmtd))
# for coref prediction stuff
# we'll use string equality for now
def save_coref_task_data(outfile, inp_file="full_newnba_prepdata2.json"):
with codecs.open(inp_file, "r", "utf-8") as f:
data = json.load(f)
all_ents, players, teams, cities = get_ents(data["train"])
datasets = []
# labels are nomatch, match, pron
for dataset in [data["train"], data["valid"]]:
examples = []
for i, entry in enumerate(dataset):
summ = entry["summary"]
ents = extract_entities(summ, all_ents, prons)
for j in range(1, len(ents)):
# just get all the words from previous mention till this one starts
prev_start, prev_end, prev_str, _ = ents[j-1]
curr_start, curr_end, curr_str, curr_pron = ents[j]
#window = summ[prev_start:curr_start]
window = summ[prev_end:curr_start]
label = None
if curr_pron: # prons
label = 3
else:
#label = 2 if prev_str == curr_str else 1
label = 2 if prev_str in curr_str or curr_str in prev_str else 1
examples.append((window, label))
datasets.append(examples)
# make vocab and get labels
word_counter = Counter()
[word_counter.update(tup[0]) for tup in datasets[0]]
for k in word_counter.keys():
if word_counter[k] < 2:
del word_counter[k] # will replace w/ unk
word_counter["UNK"] = 1
vocab = dict(((wrd, i+1) for i, wrd in enumerate(word_counter.keys())))
labeldict = {"NOMATCH": 1, "MATCH": 2, "PRON": 3}
max_trlen = max((len(tup[0]) for tup in datasets[0]))
max_vallen = max((len(tup[0]) for tup in datasets[1]))
print("max sentence lengths:", max_trlen, max_vallen)
# map words to indices
trwindows = [[vocab[wrd] if wrd in vocab else vocab["UNK"] for wrd in window]
+ [-1]*(max_trlen - len(window)) for (window, label) in datasets[0]]
trlabels = [label for (window, label) in datasets[0]]
valwindows = [[vocab[wrd] if wrd in vocab else vocab["UNK"] for wrd in window]
+ [-1]*(max_vallen - len(window)) for (window, label) in datasets[1]]
vallabels = [label for (window, label) in datasets[1]]
print(len(trwindows), "training examples")
print(len(valwindows), "validation examples")
print(Counter(trlabels))
print(Counter(vallabels))
h5fi = h5py.File(outfile, "w")
h5fi["trwindows"] = np.array(trwindows, dtype=int)
h5fi["trlens"] = np.array([len(window) for (window, label) in datasets[0]], dtype=int)
h5fi["trlabels"] = np.array(trlabels, dtype=int)
h5fi["valwindows"] = np.array(valwindows, dtype=int)
h5fi["vallens"] = np.array([len(window) for (window, label) in datasets[1]], dtype=int)
h5fi["vallabels"] = np.array(vallabels, dtype=int)
#h5fi["vallabelnums"] = np.array(vallabelnums, dtype=int)
h5fi.close()
# write dicts
revvocab = dict(((v,k) for k,v in vocab.items()))
revlabels = dict(((v,k) for k,v in labeldict.items()))
with codecs.open(outfile.split('.')[0] + ".dict", "w+", "utf-8") as f:
for i in range(1, len(revvocab)+1):
f.write("%s %d \n" % (revvocab[i], i))
with codecs.open(outfile.split('.')[0] + ".labels", "w+", "utf-8") as f:
for i in range(1, len(revlabels)+1):
f.write("%s %d \n" % (revlabels[i], i))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Utility Functions')
parser.add_argument('-input_path', type=str, default="",
help="path to input")
parser.add_argument('-output_fi', type=str, default="",
help="desired path to output file")
parser.add_argument('-gen_fi', type=str, default="",
help="path to file containing generated summaries")
parser.add_argument('-dict_pfx', type=str, default="roto-ie",
help="prefix of .dict and .labels files")
parser.add_argument('-mode', type=str, default='ptrs',
choices=['ptrs', 'make_ie_data', 'prep_gen_data'],
help="what utility function to run")
parser.add_argument('-test', action='store_true', help='use test data')
args = parser.parse_args()
if args.mode == 'ptrs':
make_pointerfi(args.output_fi, inp_file=args.input_path)
elif args.mode == 'make_ie_data':
save_full_sent_data(args.output_fi, path=args.input_path, multilabel_train=True)
elif args.mode == 'prep_gen_data':
prep_generated_data(args.gen_fi, args.dict_pfx, args.output_fi, path=args.input_path,
test=args.test)