-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
210 lines (172 loc) Β· 6.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from random import randint, choice
import random
import numpy as np
import argparse
import wandb
import os
import yaml
import torch
from torch.nn.utils import clip_grad_norm_
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from torchvision import transforms
from adamp import AdamP
from easydict import EasyDict
from dalle_pytorch import VQGanVAE
from dalle_pytorch.vae import VQGanVAE
from loader import TextImageDataset, ImgDatasetExample
from dalle.models import DALLE_Klue_Roberta
from utils import set_seed
def save_model(save_path, params, model):
save_obj = {"hparams": params, "vae_params": None, "weights": model.state_dict()}
torch.save(save_obj, save_path)
def train():
for epoch in range(DALLE_CFG.EPOCHS):
for i, (text, images, mask) in enumerate(dl):
text, images, mask = map(lambda t: t.to(device), (text, images, mask))
loss = dalle(text, images, mask=mask, return_loss=True)
loss.backward()
clip_grad_norm_(dalle.parameters(), DALLE_CFG.GRAD_CLIP_NORM)
opt.step()
opt.zero_grad()
log = {}
if i % 100 == 0:
print(epoch, i, f"loss - {loss.item()}")
log = {**log, "epoch": epoch, "iter": i, "loss": loss.item()}
if i % 200 == 0:
sample_text = text[:1]
token_list = sample_text.masked_select(sample_text != 0).tolist()
decoded_text = tokenizer.decode(token_list)
image = dalle.generate_images(
text[:1], mask=mask[:1], filter_thres=0.9 # topk sampling at 0.9
)
save_model(f"{args.save_path}/dalle_uk.pt", dalle_params, dalle)
wandb.save(f"{args.save_path}/dalle_uk.pt")
log = {**log, "image": wandb.Image(image, caption=decoded_text)}
wandb.log(log)
# save trained model to wandb as an artifact every epoch's end
model_artifact = wandb.Artifact(
"trained-dalle", type="model", metadata=dict(dalle_params)
)
model_artifact.add_file(f"{args.save_path}/dalle_uk.pt")
run.log_artifact(model_artifact)
if __name__ == "__main__":
set_seed(42)
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
parser = argparse.ArgumentParser()
parser.add_argument(
"--image_folder",
type=str,
default="/opt/ml/DALLE-Couture/data/cropped_train_img",
help="",
)
parser.add_argument(
"--text_folder", type=str, default="/opt/ml/DALLE-Couture/data/train_label",
)
parser.add_argument("--batch_size", type=int, default=16, help="")
parser.add_argument(
"--transformer",
type=str,
default="basic",
help="Category of image transformer.",
)
parser.add_argument(
"--wte", type=str, default="/opt/ml/DALLE-pytorch/roberta_large_wte.pt", help=""
)
parser.add_argument(
"--wpe", type=str, default="/opt/ml/DALLE-pytorch/roberta_large_wpe.pt", help=""
)
parser.add_argument(
"--save_path", type=str, default="./results", help="save dalle model path"
)
parser.add_argument(
"--wandb_name",
type=str,
default="no_name",
help="Name to save in the wandb log.",
)
parser.add_argument(
"--vae_config",
type=str,
default="/opt/ml/KoDALLE/configs/vae_config.yaml",
help="",
)
parser.add_argument(
"--dalle_config",
type=str,
default="/opt/ml/KoDALLE/configs/dalle_config.yaml",
help="",
)
args = parser.parse_args()
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
# Configuration
with open(args.vae_config, "r") as f:
vae_config = yaml.load(f)
VAE_CFG = EasyDict(vae_config["VAE_CFG"])
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large") # Korean Tokenizer
with open(args.dalle_config, "r") as f:
dalle_config = yaml.load(f)
DALLE_CFG = EasyDict(dalle_config["DALLE_CFG"])
DALLE_CFG.VOCAB_SIZE = tokenizer.vocab_size
vae = VQGanVAE(VAE_CFG.MODEL_PATH, VAE_CFG.CONFIG_PATH)
DALLE_CFG.IMAGE_SIZE = vae.image_size
dalle_params = dict(
num_text_tokens=tokenizer.vocab_size,
text_seq_len=DALLE_CFG.TEXT_SEQ_LEN,
depth=DALLE_CFG.DEPTH,
heads=DALLE_CFG.HEADS,
dim_head=DALLE_CFG.DIM_HEAD,
reversible=DALLE_CFG.REVERSIBLE,
loss_img_weight=DALLE_CFG.LOSS_IMG_WEIGHT,
attn_types=DALLE_CFG.ATTN_TYPES,
ff_dropout=DALLE_CFG.FF_DROPOUT,
attn_dropout=DALLE_CFG.ATTN_DROPOUT,
stable=DALLE_CFG.STABLE,
shift_tokens=DALLE_CFG.SHIFT_TOKENS,
rotary_emb=DALLE_CFG.ROTARY_EMB,
)
# Image Dataset
initial_transformation = transforms.Compose(
[
transforms.Lambda(
lambda img: img.convert("RGB") if img.mode != "RGB" else img
),
transforms.Resize([VAE_CFG.IMAGE_SIZE, VAE_CFG.IMAGE_SIZE]),
# transforms.CenterCrop(VAE_CFG.IMAGE_SIZE),
transforms.ToTensor(),
]
)
dataset_visual = ImgDatasetExample(
image_folder=args.image_folder, image_transform=initial_transformation
)
dataloader_visual = DataLoader(
dataset=dataset_visual, batch_size=args.batch_size, shuffle=True
)
# Text to Image Dataset
ds = TextImageDataset(
text_folder=args.text_folder,
image_folder=args.image_folder,
text_len=DALLE_CFG.TEXT_SEQ_LEN,
image_size=DALLE_CFG.IMAGE_SIZE,
resize_ratio=DALLE_CFG.resize_ratio,
truncate_captions=DALLE_CFG.truncate_captions,
tokenizer=tokenizer,
shuffle=True,
)
assert len(ds) > 0, "dataset is empty"
dl = DataLoader(ds, batch_size=DALLE_CFG.BATCH_SIZE, shuffle=True, drop_last=True)
# DALLE Model
dalle = DALLE_Klue_Roberta(
vae=vae, wpe_dir=args.wpe, wte_dir=args.wte, **dalle_params,
).to(device)
opt = AdamP(dalle.parameters(), lr=DALLE_CFG.LEARNING_RATE)
# Wandb
run = wandb.init(
project="optimization",
entity="happyface-boostcamp",
resume=False,
config=dalle_params,
name=args.wandb_name, # change it when you experiment
)
train()