-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodel.py
280 lines (224 loc) Β· 9.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from einops import repeat
from axial_positional_embedding import AxialPositionalEmbedding
from einops import rearrange
from dalle_pytorch import DiscreteVAE
from dalle_pytorch.vae import OpenAIDiscreteVAE, VQGanVAE
from dalle_pytorch.transformer import Transformer, DivideMax
from utils import *
from tqdm import tqdm
class DALLE_Klue_Roberta(nn.Module):
def __init__(
self,
*,
# dim,
vae,
num_text_tokens=10000,
text_seq_len=256,
depth,
heads=8,
dim_head=64,
reversible=False,
attn_dropout=0.0,
ff_dropout=0,
sparse_attn=False,
attn_types=None,
loss_img_weight=7,
stable=False,
sandwich_norm=False,
shift_tokens=True,
rotary_emb=False,
wte_dir=None,
wpe_dir=None,
):
super().__init__()
assert isinstance(
vae, (DiscreteVAE, OpenAIDiscreteVAE, VQGanVAE)
), "vae must be an instance of DiscreteVAE"
image_size = vae.image_size
num_image_tokens = vae.num_tokens
image_fmap_size = vae.image_size // (2 ** vae.num_layers)
image_seq_len = image_fmap_size ** 2
num_text_tokens = (
num_text_tokens + text_seq_len
) # reserve unique padding tokens for each position (text seq len)
self.text_emb = torch.load(wte_dir)
dim = self.text_emb.weight.shape[1]
self.image_emb = nn.Embedding(num_image_tokens, dim)
print(dim, image_fmap_size, image_fmap_size)
self.text_pos_emb = (
torch.load(wpe_dir) if not rotary_emb else always(0)
) # +1 for <bos>
self.image_pos_emb = (
AxialPositionalEmbedding(
dim, axial_shape=(image_fmap_size, image_fmap_size)
)
if not rotary_emb
else always(0)
)
self.num_text_tokens = num_text_tokens # for offsetting logits index and calculating cross entropy loss
self.num_image_tokens = num_image_tokens
self.text_seq_len = text_seq_len
self.image_seq_len = image_seq_len
seq_len = text_seq_len + image_seq_len
total_tokens = num_text_tokens + num_image_tokens
self.total_tokens = total_tokens
self.total_seq_len = seq_len
self.vae = vae
set_requires_grad(self.vae, False) # freeze VAE from being trained
self.transformer = Transformer(
dim=dim,
causal=True,
seq_len=seq_len,
depth=depth,
heads=heads,
dim_head=dim_head,
reversible=reversible,
attn_dropout=attn_dropout,
ff_dropout=ff_dropout,
attn_types=attn_types,
image_fmap_size=image_fmap_size,
sparse_attn=sparse_attn,
stable=stable,
sandwich_norm=sandwich_norm,
shift_tokens=shift_tokens,
rotary_emb=rotary_emb,
)
self.stable = stable
if stable:
self.norm_by_max = DivideMax(dim=-1)
self.to_logits = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, self.total_tokens),
)
seq_range = torch.arange(seq_len)
logits_range = torch.arange(total_tokens)
seq_range = rearrange(seq_range, "n -> () n ()")
logits_range = rearrange(logits_range, "d -> () () d")
logits_mask = (
(seq_range >= text_seq_len) & (logits_range < num_text_tokens)
) | ((seq_range < text_seq_len) & (logits_range >= num_text_tokens))
self.register_buffer("logits_mask", logits_mask, persistent=False)
self.loss_img_weight = loss_img_weight
@torch.no_grad()
@eval_decorator
def generate_images(
self,
encoded_text,
*,
clip=None,
filter_thres=0.5,
temperature=1.0,
img=None,
num_init_img_tokens=None,
img_num=1,
):
text = encoded_text['input_ids']
text=repeat(text,'() n -> b n',b=img_num)
mask=encoded_text['attention_mask']
vae, text_seq_len, image_seq_len, num_text_tokens = (
self.vae,
self.text_seq_len,
self.image_seq_len,
self.num_text_tokens,
)
total_len = text_seq_len + image_seq_len
text = text[:, :text_seq_len] # make sure text is within bounds
out = text
if exists(img):
image_size = vae.image_size
assert (
img.shape[1] == 3
and img.shape[2] == image_size
and img.shape[3] == image_size
), f"input image must have the correct image size {image_size}"
indices = vae.get_codebook_indices(img)
num_img_tokens = default(
num_init_img_tokens, int(0.4375 * image_seq_len)
) # OpenAI used 14 * 32 initial tokens to prime
assert (
num_img_tokens < image_seq_len
), "number of initial image tokens for priming must be less than the total image token sequence length"
indices = indices[:, :num_img_tokens]
out = torch.cat((out, indices), dim=-1)
for cur_len in tqdm(range(out.shape[1], total_len)):
is_image = cur_len >= text_seq_len
text, image = out[:, :text_seq_len], out[:, text_seq_len:]
logits = self(text, image, mask=mask)[:, -1, :]
filtered_logits = top_k(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
sample -= (
num_text_tokens if is_image else 0
) # offset sampled token if it is an image token, since logit space is composed of text and then image tokens
out = torch.cat((out, sample), dim=-1)
if out.shape[1] <= text_seq_len:
mask = F.pad(mask, (0, 1), value=True)
img_seq = out[:, -image_seq_len:]
images = vae.decode(img_seq)
if exists(clip):
#encoded_text = encoded_text.to("cuda")
text_embeds, image_embeds = clip(encoded_text, images)
logits = text_embeds @ image_embeds.T
return images, logits
return images
def forward(self, text, image=None, mask=None, return_loss=False):
assert (
text.shape[-1] == self.text_seq_len
), f"the length {text.shape[-1]} of the text tokens you passed in does not have the correct length ({self.text_seq_len})"
device, total_seq_len = text.device, self.total_seq_len
# make sure padding in text tokens get unique padding token id
text = F.pad(text, (1, 0), value=0)
tokens = self.text_emb(text)
tokens += self.text_pos_emb(torch.arange(text.shape[1], device=device))
seq_len = tokens.shape[1]
if exists(image) and not is_empty(image):
is_raw_image = len(image.shape) == 4
if is_raw_image:
image_size = self.vae.image_size
assert tuple(image.shape[1:]) == (
3,
image_size,
image_size,
), f"invalid image of dimensions {image.shape} passed in during training"
image = self.vae.get_codebook_indices(image)
image_len = image.shape[1]
image_emb = self.image_emb(image)
image_emb += self.image_pos_emb(image_emb)
tokens = torch.cat((tokens, image_emb), dim=1)
seq_len += image_len
# when training, if the length exceeds the total text + image length
# remove the last token, since it needs not to be trained
if tokens.shape[1] > total_seq_len:
seq_len -= 1
tokens = tokens[:, :-1]
if self.stable:
alpha = 0.1
tokens = tokens * alpha + tokens.detach() * (1 - alpha)
out = self.transformer(tokens)
if self.stable:
out = self.norm_by_max(out)
logits = self.to_logits(out)
# mask logits to make sure text predicts text (except last token), and image predicts image
logits_mask = self.logits_mask[:, :seq_len]
max_neg_value = -torch.finfo(logits.dtype).max
logits.masked_fill_(logits_mask, max_neg_value)
if not return_loss:
return logits
assert exists(image), "when training, image must be supplied"
offsetted_image = image + self.num_text_tokens
labels = torch.cat((text[:, 1:], offsetted_image), dim=1)
logits = rearrange(logits, "b n c -> b c n")
loss_text = F.cross_entropy(
logits[:, :, : self.text_seq_len], labels[:, : self.text_seq_len]
)
loss_img = F.cross_entropy(
logits[:, :, self.text_seq_len :], labels[:, self.text_seq_len :]
)
loss = (loss_text + self.loss_img_weight * loss_img) / (
self.loss_img_weight + 1
)
return loss