-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathannoy_web.py
executable file
·61 lines (50 loc) · 1.88 KB
/
annoy_web.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright (C) 2017 Juliette Lonij, Koninklijke Bibliotheek -
# National Library of the Netherlands
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import annoy_indexer
from bottle import request
from bottle import response
from bottle import route
from bottle import run
@route('/query')
def index():
urn = request.params.get('urn')
nns = request.params.get('nns')
step = request.params.get('step')
vectors = request.params.get('vectors')
if not urn:
abort(400, 'No fitting argument ("urn=...") given.')
if urn.startswith('http://resolver.kb.nl'):
urn = urn.split('=')[1]
if nns and step:
results = indexer.query_all(urn, n_nns=[int(nns)],
step_sizes=[int(step)], vectors=vectors)
else:
results = indexer.query_all(urn, n_nns=[10, 1], step_sizes=[50, 1],
exclude_self=True, vectors=vectors)
response.set_header('Content-Type', 'application/json')
return results
@route('/random')
def random():
images = indexer.get_random_images()
response.set_header('Content-Type', 'application/json')
return {'images': images}
if __name__ == '__main__':
indexer = annoy_indexer.AnnoyIndexer(vector_dir='vectors',
index_dir='indices-eucl', n_dimensions=2048, metric='euclidean')
indexer.load(step_sizes=[50, 1])
run(host='localhost', port=5050)