forked from brianchiang-tw/SQL_for_DataScience
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal_Assignment.txt
604 lines (441 loc) · 41.5 KB
/
Final_Assignment.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
Part 1: Yelp Dataset Profiling and Understanding
----------------------------------------------------------------------------------------------------------------------
1. Profile the data by finding the total number of records for each of the tables below:
SELECT COUNT(*)
FROM table
Table name Total number of records
-----------------------------------------------------------
i. Attribute table = 10000
ii. Business table = 10000
iii. Category table = 10000
iv. Checkin table = 10000
v. elite_years table = 10000
vi. friend table = 10000
vii. hours table = 10000
viii. photo table = 10000
ix. review table = 10000
x. tip table = 10000
xi. user table = 10000
----------------------------------------------------------------------------------------------------------------------
2. Find the total number of distinct records for each of the keys listed below:
SELECT COUNT(DISTINCT(key))
FROM table
Table name key: Total number of records
-----------------------------------------------------------
i. Business = id: 10000
ii. Hours = business_id: 1562
iii. Category = business_id: 2643
iv. Attribute = business_id: 1115
v. Review = id:10000, business_id: 8090, user_id: 9581
vi. Checkin = business_id: 493
vii. Photo = id: 10000, business_id: 6493
viii. Tip = user_id: 537, business_id: 3979
ix. User = id: 10000
x. Friend = user_id: 11
xi. Elite_years = user_id: 2780
----------------------------------------------------------------------------------------------------------------------
3. Are there any columns with null values in the Users table? Indicate "yes," or "no."
Answer: "no"
SQL code used to arrive at answer:
SELECT COUNT(*) AS NullCount
FROM user
WHERE id IS NULL OR
name IS NULL OR
review_count IS NULL OR
yelping_since IS NULL OR
useful IS NULL OR
funny IS NULL OR
cool IS NULL OR
fans IS NULL OR
average_stars IS NULL OR
compliment_hot IS NULL OR
compliment_more IS NULL OR
compliment_profile IS NULL OR
compliment_cute IS NULL OR
compliment_list IS NULL OR
compliment_note IS NULL OR
compliment_plain IS NULL OR
compliment_cool IS NULL OR
compliment_funny IS NULL OR
compliment_writer IS NULL OR
compliment_photos IS NULL
----------------------------------------------------------------------------------------------------------------------
4. For each table and column listed below,
display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:
SQL code used to arrive at answer:
SELECT AVG(column)
FROM table
i. Table: Review, Column: Stars
min: 1 max: 5 avg: 3.7082
ii. Table: Business, Column: Stars
min: 1 max: 5 avg: 3.6549
iii. Table: Tip, Column: Likes
min: 0 max: 2 avg: 0.0144
iv. Table: Checkin, Column: Count
min: 1 max: 53 avg: 1.9414
v. Table: User, Column: Review_count
min: 0 max: 2000 avg: 24.2995
----------------------------------------------------------------------------------------------------------------------
5. List the cities with the most reviews in descending order:
SQL code used to arrive at answer:
SELECT city, SUM(review_count) AS reviews
FROM business
GROUP BY city
ORDER BY reviews DESC
Copy and Paste the Result Below:
+-----------------+---------+
| city | reviews |
+-----------------+---------+
| Las Vegas | 82854 |
| Phoenix | 34503 |
| Toronto | 24113 |
| Scottsdale | 20614 |
| Charlotte | 12523 |
| Henderson | 10871 |
| Tempe | 10504 |
| Pittsburgh | 9798 |
| Montréal | 9448 |
| Chandler | 8112 |
| Mesa | 6875 |
| Gilbert | 6380 |
| Cleveland | 5593 |
| Madison | 5265 |
| Glendale | 4406 |
| Mississauga | 3814 |
| Edinburgh | 2792 |
| Peoria | 2624 |
| North Las Vegas | 2438 |
| Markham | 2352 |
| Champaign | 2029 |
| Stuttgart | 1849 |
| Surprise | 1520 |
| Lakewood | 1465 |
| Goodyear | 1155 |
+-----------------+---------+
(Output limit exceeded, 25 of 362 total rows shown)
----------------------------------------------------------------------------------------------------------------------
6. Find the distribution of star ratings to the business in the following cities:
i. Avon
SQL code used to arrive at answer:
SELECT stars AS [star rating], SUM(review_count) AS count
FROM business
WHERE city == 'Avon'
GROUP BY stars
Copy and Paste the Resulting Table Below (2 columns - star rating and count):
+-------------+-------+
| star rating | count |
+-------------+-------+
| 1.5 | 10 |
| 2.5 | 6 |
| 3.5 | 88 |
| 4.0 | 21 |
| 4.5 | 31 |
| 5.0 | 3 |
+-------------+-------+
ii. Beachwood
SQL code used to arrive at answer:
SELECT stars AS [star rating], SUM(review_count) AS count
FROM business
WHERE city == 'Beachwood'
GROUP BY stars
Copy and Paste the Resulting Table Below (2 columns - star rating and count):
+-------------+-------+
| star rating | count |
+-------------+-------+
| 2.0 | 8 |
| 2.5 | 3 |
| 3.0 | 11 |
| 3.5 | 6 |
| 4.0 | 69 |
| 4.5 | 17 |
| 5.0 | 23 |
+-------------+-------+
----------------------------------------------------------------------------------------------------------------------
7. Find the top 3 users based on their total number of reviews:
SQL code used to arrive at answer:
SELECT name AS user, review_count AS reviews
FROM user
ORDER BY review_count DESC
LIMIT 3
Copy and Paste the Result Below:
+--------+---------+
| user | reviews |
+--------+---------+
| Gerald | 2000 |
| Sara | 1629 |
| Yuri | 1339 |
+--------+---------+
----------------------------------------------------------------------------------------------------------------------
8. Does posing more reviews correlate with more fans?
Yes, posing more reiews correlates with more fans.
In addition, the longer time they have been yelping,
and the more reviews they give has a higher fan count.
Please explain your findings and interpretation of the results:
SELECT name,
review_count AS reviews,
fans,
yelping_since
FROM user
ORDER BY fans DESC
+-----------+---------+------+---------------------+
| name | reviews | fans | yelping_since |
+-----------+---------+------+---------------------+
| Amy | 609 | 503 | 2007-07-19 00:00:00 |
| Mimi | 968 | 497 | 2011-03-30 00:00:00 |
| Harald | 1153 | 311 | 2012-11-27 00:00:00 |
| Gerald | 2000 | 253 | 2012-12-16 00:00:00 |
| Christine | 930 | 173 | 2009-07-08 00:00:00 |
| Lisa | 813 | 159 | 2009-10-05 00:00:00 |
| Cat | 377 | 133 | 2009-02-05 00:00:00 |
| William | 1215 | 126 | 2015-02-19 00:00:00 |
| Fran | 862 | 124 | 2012-04-05 00:00:00 |
| Lissa | 834 | 120 | 2007-08-14 00:00:00 |
| Mark | 861 | 115 | 2009-05-31 00:00:00 |
| Tiffany | 408 | 111 | 2008-10-28 00:00:00 |
| bernice | 255 | 105 | 2007-08-29 00:00:00 |
| Roanna | 1039 | 104 | 2006-03-28 00:00:00 |
| Angela | 694 | 101 | 2010-10-01 00:00:00 |
| .Hon | 1246 | 101 | 2006-07-19 00:00:00 |
| Ben | 307 | 96 | 2007-03-10 00:00:00 |
| Linda | 584 | 89 | 2005-08-07 00:00:00 |
| Christina | 842 | 85 | 2012-10-08 00:00:00 |
| Jessica | 220 | 84 | 2009-01-12 00:00:00 |
| Greg | 408 | 81 | 2008-02-16 00:00:00 |
| Nieves | 178 | 80 | 2013-07-08 00:00:00 |
| Sui | 754 | 78 | 2009-09-07 00:00:00 |
| Yuri | 1339 | 76 | 2008-01-03 00:00:00 |
| Nicole | 161 | 73 | 2009-04-30 00:00:00 |
+-----------+---------+------+---------------------+
(Output limit exceeded, 25 of 10000 total rows shown)
----------------------------------------------------------------------------------------------------------------------
9. Are there more reviews with the word "love" or with the word "hate" in them?
Answer: There are more reviews with the word "love", with 1780 exisence in review.
SQL code used to arrive at answer:
SELECT COUNT(*) AS [love occurrence]
FROM review
WHERE text LIKE "%love%"
+-----------------+
| love occurrence |
+-----------------+
| 1780 |
+-----------------+
SELECT COUNT(*) AS [hate occurrence]
FROM review
WHERE text LIKE "%hate%"
+-----------------+
| hate occurrence |
+-----------------+
| 232 |
+-----------------+
----------------------------------------------------------------------------------------------------------------------
10. Find the top 10 users with the most fans:
SQL code used to arrive at answer:
SELECT name, fans
FROM user
ORDER BY fans DESC
LIMIT 10
Copy and Paste the Result Below:
+-----------+------+
| name | fans |
+-----------+------+
| Amy | 503 |
| Mimi | 497 |
| Harald | 311 |
| Gerald | 253 |
| Christine | 173 |
| Lisa | 159 |
| Cat | 133 |
| William | 126 |
| Fran | 124 |
| Lissa | 120 |
+-----------+------+
11. Is there a strong correlation between having a high number of fans and being listed
as "useful" or "funny?"
Yes, there is a string correlation between having more fans and being listed as useful or funny.
SQL code used to arrive at answer:
SELECT name, fans, useful, funny, review_count, yelping_since
FROM user
ORDER BY fans DESC
Copy and Paste the Result Below:
+-----------+------+--------+--------+--------------+---------------------+
| name | fans | useful | funny | review_count | yelping_since |
+-----------+------+--------+--------+--------------+---------------------+
| Amy | 503 | 3226 | 2554 | 609 | 2007-07-19 00:00:00 |
| Mimi | 497 | 257 | 138 | 968 | 2011-03-30 00:00:00 |
| Harald | 311 | 122921 | 122419 | 1153 | 2012-11-27 00:00:00 |
| Gerald | 253 | 17524 | 2324 | 2000 | 2012-12-16 00:00:00 |
| Christine | 173 | 4834 | 6646 | 930 | 2009-07-08 00:00:00 |
| Lisa | 159 | 48 | 13 | 813 | 2009-10-05 00:00:00 |
| Cat | 133 | 1062 | 672 | 377 | 2009-02-05 00:00:00 |
| William | 126 | 9363 | 9361 | 1215 | 2015-02-19 00:00:00 |
| Fran | 124 | 9851 | 7606 | 862 | 2012-04-05 00:00:00 |
| Lissa | 120 | 455 | 150 | 834 | 2007-08-14 00:00:00 |
| Mark | 115 | 4008 | 570 | 861 | 2009-05-31 00:00:00 |
| Tiffany | 111 | 1366 | 984 | 408 | 2008-10-28 00:00:00 |
| bernice | 105 | 120 | 112 | 255 | 2007-08-29 00:00:00 |
| Roanna | 104 | 2995 | 1188 | 1039 | 2006-03-28 00:00:00 |
| Angela | 101 | 158 | 164 | 694 | 2010-10-01 00:00:00 |
| .Hon | 101 | 7850 | 5851 | 1246 | 2006-07-19 00:00:00 |
| Ben | 96 | 1180 | 1155 | 307 | 2007-03-10 00:00:00 |
| Linda | 89 | 3177 | 2736 | 584 | 2005-08-07 00:00:00 |
| Christina | 85 | 158 | 34 | 842 | 2012-10-08 00:00:00 |
| Jessica | 84 | 2161 | 2091 | 220 | 2009-01-12 00:00:00 |
| Greg | 81 | 820 | 753 | 408 | 2008-02-16 00:00:00 |
| Nieves | 80 | 1091 | 774 | 178 | 2013-07-08 00:00:00 |
| Sui | 78 | 9 | 18 | 754 | 2009-09-07 00:00:00 |
| Yuri | 76 | 1166 | 220 | 1339 | 2008-01-03 00:00:00 |
| Nicole | 73 | 13 | 10 | 161 | 2009-04-30 00:00:00 |
+-----------+------+--------+--------+--------------+---------------------+
(Output limit exceeded, 25 of 10000 total rows shown)
Please explain your findings and interpretation of the results:
There is a outlier, Harald,with extreme value.
With the outstandingly high level of useful and funny count,
Harald's fans count should be much higher to meets the average standard of overall users.
Part 2: Inferences and Analysis
1. Pick one city and category of your choice and group the businesses in that city
or category by their overall star rating. Compare the businesses with 2-3 stars to
the businesses with 4-5 stars and answer the following questions. Include your code.
i. Do the two groups you chose to analyze have a different distribution of hours?
The 4-5 star group tends to have shorter hours then the 2-3 star group.
ii. Do the two groups you chose to analyze have a different number of reviews?
Yes, 4-5 star group tends to have more reviews
iii. Are you able to infer anything from the location data provided between these two
groups? Explain.
No, every business is in a different zip-code.
SQL code used for analysis:
SELECT B.name,
B.review_count,
H.hours,
postal_code,
CASE
WHEN hours LIKE "%monday%" THEN 1
WHEN hours LIKE "%tuesday%" THEN 2
WHEN hours LIKE "%wednesday%" THEN 3
WHEN hours LIKE "%thursday%" THEN 4
WHEN hours LIKE "%friday%" THEN 5
WHEN hours LIKE "%saturday%" THEN 6
WHEN hours LIKE "%sunday%" THEN 7
END AS ord,
CASE
WHEN B.stars BETWEEN 2 AND 3 THEN '2-3 stars'
WHEN B.stars BETWEEN 4 AND 5 THEN '4-5 stars'
END AS star_rating
FROM business B INNER JOIN hours H
ON B.id = H.business_id
INNER JOIN category C
ON C.business_id = B.id
WHERE (B.city == 'Las Vegas'
AND
C.category LIKE 'shopping')
AND
(B.stars BETWEEN 2 AND 3
OR
B.stars BETWEEN 4 AND 5)
GROUP BY stars,ord
ORDER BY star_rating, ord ASC
2. Group business based on the ones that are open and the ones that are closed. What
differences can you find between the ones that are still open and the ones that are
closed? List at least two differences and the SQL code you used to arrive at your
answer.
i. Difference 1:
The businesses that are open tend to have more reviews than those closed on average.
Open: AVG(review_count) = 31.757
Closed: AVG(review_count0 = 23.198
ii. Difference 2:
The average star rating is higher for businesses that are open than those closed.
Open: AVG(stars) = 3.679
Closed: AVG(stars) = 3.520
SQL code used for analysis:
SELECT COUNT(DISTINCT(id)),
AVG(review_count),
SUM(review_count),
AVG(stars),
is_open
FROM business
GROUP BY is_open
3. For this last part of your analysis, you are going to choose the type of analysis you
want to conduct on the Yelp dataset and are going to prepare the data for analysis.
Ideas for analysis include: Parsing out keywords and business attributes for sentiment
analysis, clustering businesses to find commonalities or anomalies between them,
predicting the overall star rating for a business, predicting the number of fans a
user will have, and so on. These are just a few examples to get you started, so feel
free to be creative and come up with your own problem you want to solve. Provide
answers, in-line, to all of the following:
i. Indicate the type of analysis you chose to do:
Predicting whether a business will stay open or close.
ii. Write 1-2 brief paragraphs on the type of data you will need for your analysis
and why you chose that data:
In order to understand the importance of different factors which
will help their business stay open.
Some column field may be important such as
number of reviews, star rating of business, hours open, and location.
In addition, it would be nice to gather the latitude and longitude, city, state,
postal_code, and address to make processing easier later on.
Attributes as well as categories is used to better distinguish
between different types of businesses.
iii. Output of your finished dataset:
+--------------------------------+-----------------------------+---------------+-------+-------------+----------+-----------+--------------+-------+--------------+---------------+-----------------+----------------+--------------+----------------+--------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+
| name | address | city | state | postal_code | latitude | longitude | review_count | stars | monday_hours | tuesday_hours | wednesday_hours | thursday_hours | friday_hours | saturday_hours | sunday_hours | categories | attributes | is_open |
+--------------------------------+-----------------------------+---------------+-------+-------------+----------+-----------+--------------+-------+--------------+---------------+-----------------+----------------+--------------+----------------+--------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+
| Flaming Kitchen | 3235 York Regional Road 7 | Markham | ON | L3R 3P9 | 43.8484 | -79.3487 | 25 | 3.0 | 12:00-23:00 | 12:00-23:00 | 12:00-23:00 | 12:00-23:00 | 12:00-23:00 | 12:00-23:00 | 12:00-23:00 | Asian Fusion,Restaurants | RestaurantsTableService,GoodForMeal,Alcohol,Caters,HasTV,RestaurantsGoodForGroups,NoiseLevel,WiFi,RestaurantsAttire,RestaurantsReservations,OutdoorSeating,RestaurantsPriceRange2,BikeParking,RestaurantsDelivery,Ambience,RestaurantsTakeOut,GoodForKids,BusinessParking | 1 |
| Freeman's Car Stereo | 4821 South Blvd | Charlotte | NC | 28217 | 35.1727 | -80.8755 | 8 | 3.5 | 9:00-19:00 | 9:00-19:00 | 9:00-19:00 | 9:00-19:00 | 9:00-19:00 | 9:00-17:00 | None | Electronics,Shopping,Automotive,Car Stereo Installation | BusinessAcceptsCreditCards,RestaurantsPriceRange2,BusinessParking,WheelchairAccessible | 1 |
| Motors & More | 2315 Highland Dr | Las Vegas | NV | 89102 | 36.1465 | -115.167 | 7 | 5.0 | 7:00-17:00 | 7:00-17:00 | 7:00-17:00 | 7:00-17:00 | 7:00-17:00 | 8:00-12:00 | None | Home Services,Solar Installation,Heating & Air Conditioning/HVAC | BusinessAcceptsCreditCards,BusinessAcceptsBitcoin,ByAppointmentOnly | 1 |
| Baby Cakes | 4145 Erie St | Willoughby | OH | 44094 | 41.6399 | -81.4064 | 5 | 3.5 | None | 11:00-17:00 | 11:00-17:00 | 11:00-20:00 | 11:00-17:00 | 10:00-17:00 | None | Bakeries,Food | BusinessAcceptsCreditCards,RestaurantsTakeOut,WheelchairAccessible,RestaurantsDelivery | 1 |
| Snip-its Rocky River | 21609 Center Ridge Rd | Rocky River | OH | 44116 | 41.4595 | -81.8587 | 18 | 2.5 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 9:00-17:30 | 10:00-16:00 | Beauty & Spas,Hair Salons | BusinessAcceptsCreditCards,RestaurantsPriceRange2,GoodForKids,BusinessParking,ByAppointmentOnly | 1 |
| Standard Restaurant Supply | 2922 E McDowell Rd | Phoenix | AZ | 85008 | 33.4664 | -112.018 | 15 | 3.5 | 8:00-18:00 | 8:00-18:00 | 8:00-18:00 | 8:00-18:00 | 8:00-18:00 | 9:00-17:00 | None | Shopping,Wholesalers,Restaurant Supplies,Professional Services,Wholesale Stores | BusinessAcceptsCreditCards,RestaurantsPriceRange2,BusinessParking,BikeParking,WheelchairAccessible | 1 |
| What A Bagel | 973 Eglinton Avenue W | York | ON | M6C 2C4 | 43.6999 | -79.4295 | 8 | 3.0 | 6:00-15:30 | 6:00-15:30 | 6:00-15:30 | 6:00-15:30 | 6:00-15:30 | 6:00-15:30 | None | Restaurants,Bagels,Breakfast & Brunch,Food | NoiseLevel,RestaurantsAttire,RestaurantsTableService,OutdoorSeating | 1 |
| Pinnacle Fencing Solutions | | Phoenix | AZ | 85060 | 33.4805 | -111.997 | 13 | 4.0 | 8:00-16:00 | 8:00-16:00 | 8:00-16:00 | 8:00-16:00 | 8:00-16:00 | None | None | Home Services,Contractors,Fences & Gates | BusinessAcceptsCreditCards,ByAppointmentOnly | 1 |
| Alterations Express | 17240 Royalton Rd | Strongsville | OH | 44136 | 41.3141 | -81.8207 | 3 | 4.0 | 8:00-19:00 | 8:00-19:00 | 8:00-19:00 | 8:00-19:00 | 8:00-19:00 | 8:00-18:00 | None | Shopping,Bridal,Dry Cleaning & Laundry,Local Services,Sewing & Alterations | BusinessParking,BusinessAcceptsCreditCards,RestaurantsPriceRange2,BusinessAcceptsBitcoin,BikeParking,ByAppointmentOnly,WheelchairAccessible | 1 |
| Extra Space Storage | 2880 W Elliot Rd | Chandler | AZ | 85224 | 33.3496 | -111.892 | 5 | 4.0 | 8:00-17:30 | 8:00-17:30 | 8:00-17:30 | 8:00-17:30 | 8:00-17:30 | 8:00-17:30 | 10:00-14:00 | Home Services,Self Storage,Movers,Shopping,Local Services,Home Decor,Home & Garden | BusinessAcceptsCreditCards | 1 |
| Gussied Up | 1090 Bathurst St | Toronto | ON | M5R 1W5 | 43.6727 | -79.4142 | 6 | 4.5 | None | 11:00-19:00 | 11:00-19:00 | 11:00-19:00 | 11:00-19:00 | 11:00-17:00 | 12:00-16:00 | Women's Clothing,Shopping,Fashion | BusinessAcceptsCreditCards,RestaurantsPriceRange2,BusinessParking,BikeParking | 1 |
| Buddy's Muffler & Exhaust | 1509 Hickory Grove Rd | Gastonia | NC | 28056 | 35.2772 | -81.06 | 4 | 5.0 | 8:30-17:00 | 8:30-17:00 | 8:30-17:00 | 8:30-17:00 | 8:30-17:00 | 9:00-15:00 | None | Automotive,Auto Repair | BusinessAcceptsCreditCards | 1 |
| Five Guys | 2641 N 44th St, Ste 100 | Phoenix | AZ | 85008 | 33.478 | -111.986 | 63 | 3.5 | 10:00-22:00 | 10:00-22:00 | 10:00-22:00 | 10:00-22:00 | 10:00-22:00 | 10:00-22:00 | 10:00-22:00 | American (New),Burgers,Fast Food,Restaurants | RestaurantsTableService,GoodForMeal,Alcohol,Caters,HasTV,RestaurantsGoodForGroups,NoiseLevel,WiFi,RestaurantsAttire,RestaurantsReservations,OutdoorSeating,BusinessAcceptsCreditCards,RestaurantsPriceRange2,BikeParking,RestaurantsDelivery,Ambience,RestaurantsTakeOut,GoodForKids,DriveThru,BusinessParking | 1 |
| All Storage - Anthem | 2620 W Horizon Ridge Pkwy | Henderson | NV | 89052 | 36.0021 | -115.102 | 3 | 3.5 | 9:00-16:30 | 9:00-16:30 | 9:00-16:30 | 9:00-16:30 | 9:00-16:30 | 9:00-16:30 | None | Truck Rental,Local Services,Self Storage,Parking,Automotive | BusinessAcceptsCreditCards,BusinessAcceptsBitcoin | 1 |
| Mood | 1 Greenside Place | Edinburgh | EDH | EH1 3AA | 55.957 | -3.18502 | 11 | 2.0 | None | None | None | 22:30-3:00 | 22:00-3:00 | 22:00-3:00 | 22:30-3:00 | Dance Clubs,Nightlife | Alcohol,OutdoorSeating,BusinessAcceptsCreditCards,RestaurantsPriceRange2,AgesAllowed,Music,Smoking,RestaurantsGoodForGroups,WheelchairAccessible | 0 |
| Starbucks | 4605 E Chandler Blvd, Ste A | Phoenix | AZ | 85048 | 33.3044 | -111.984 | 52 | 3.0 | 5:00-20:00 | 5:00-20:00 | 5:00-20:00 | 5:00-20:30 | 5:00-20:00 | 5:00-20:00 | 5:00-20:00 | Coffee & Tea,Food | BusinessParking,Caters,WiFi,OutdoorSeating,BusinessAcceptsCreditCards,RestaurantsPriceRange2,BikeParking,RestaurantsTakeOut | 1 |
| Big Smoke Burger | 260 Yonge Street | Toronto | ON | M4B 2L9 | 43.6546 | -79.3805 | 47 | 3.0 | 10:30-21:00 | 10:30-21:00 | 10:30-21:00 | 10:30-21:00 | 10:30-21:00 | 10:30-21:00 | 11:00-19:00 | Poutineries,Burgers,Restaurants | RestaurantsTableService,GoodForMeal,Alcohol,Caters,HasTV,RestaurantsGoodForGroups,NoiseLevel,WiFi,RestaurantsAttire,RestaurantsReservations,OutdoorSeating,BusinessAcceptsCreditCards,RestaurantsPriceRange2,WheelchairAccessible,BikeParking,RestaurantsDelivery,Ambience,RestaurantsTakeOut,GoodForKids,DriveThru,BusinessParking | 1 |
| Subway | 2904 Yorkmont Rd | Charlotte | NC | 28208 | 35.1903 | -80.9288 | 7 | 3.5 | 6:00-22:00 | 6:00-22:00 | 6:00-22:00 | 6:00-22:00 | 6:00-22:00 | 10:00-21:00 | None | Fast Food,Restaurants,Sandwiches | Ambience,RestaurantsPriceRange2,GoodForKids | 1 |
| Red Rock Canyon Visitor Center | 1000 Scenic Loop Dr | Las Vegas | NV | 89161 | 36.1357 | -115.428 | 32 | 4.5 | 8:00-16:30 | 8:00-16:30 | 8:00-16:30 | 8:00-16:30 | 8:00-16:30 | 8:00-16:30 | 8:00-16:30 | Education,Visitor Centers,Professional Services,Special Education,Local Services,Community Service/Non-Profit,Hotels & Travel,Travel Services,Gift Shops,Shopping,Parks,Hiking,Flowers & Gifts,Active Life | BusinessAcceptsCreditCards,GoodForKids | 1 |
| Scent From Above Company | 2501 W Behrend Dr, Ste 67 | Scottsdale | AZ | 85027 | 33.6656 | -112.111 | 14 | 4.5 | 6:00-16:00 | 6:00-16:00 | 6:00-16:00 | 6:00-16:00 | 6:00-16:00 | None | None | Home Cleaning,Local Services,Professional Services,Carpet Cleaning,Home Services,Office Cleaning,Window Washing | BusinessAcceptsCreditCards,ByAppointmentOnly | 1 |
| The Charlotte Room | 19 Charlotte Street | Toronto | ON | M5V 2H5 | 43.6466 | -79.3938 | 10 | 3.5 | 15:00-1:00 | 15:00-1:00 | 15:00-1:00 | 15:00-1:00 | 15:00-2:00 | 18:00-2:00 | None | Event Planning & Services,Bars,Nightlife,Lounges,Pool Halls,Venues & Event Spaces | BusinessParking,HasTV,CoatCheck,NoiseLevel,OutdoorSeating,BusinessAcceptsCreditCards,RestaurantsPriceRange2,Music,WheelchairAccessible,Smoking,Ambience,BestNights,RestaurantsGoodForGroups,HappyHour,GoodForDancing,Alcohol | 0 |
| PC Savants | 11966 W Candelaria Ct | Sun City | AZ | 85373 | 33.6901 | -112.319 | 11 | 5.0 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 11:00-18:00 | 11:00-18:00 | IT Services & Computer Repair,Electronics Repair,Local Services,Mobile Phone Repair | BusinessAcceptsCreditCards,BusinessAcceptsBitcoin | 1 |
| Sweet Ruby Jane Confections | 8975 S Eastern Ave, Ste 3-B | Las Vegas | NV | 89123 | 36.015 | -115.118 | 30 | 4.0 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | 10:00-19:00 | None | Food,Chocolatiers & Shops,Bakeries,Specialty Food,Desserts | BusinessAcceptsCreditCards,RestaurantsPriceRange2,BusinessParking,WheelchairAccessible | 0 |
| Oinky's Pork Chop Heaven | 22483 Emery Rd | North Randall | OH | 44128 | 41.4352 | -81.5214 | 3 | 3.0 | 6:00-23:00 | 6:00-23:00 | 6:00-23:00 | 6:00-23:00 | 6:00-23:00 | 6:00-23:00 | 6:00-23:00 | Soul Food,Restaurants | RestaurantsAttire,RestaurantsGoodForGroups,GoodForKids,RestaurantsReservations,RestaurantsTakeOut | 1 |
| Sushi Osaka | 5084 Dundas Street W | Toronto | ON | M9A 1C2 | 43.6452 | -79.5324 | 8 | 4.5 | 11:00-23:00 | 11:00-23:00 | 11:00-23:00 | 11:00-23:00 | 11:00-23:00 | 11:00-23:00 | 14:00-23:00 | Sushi Bars,Restaurants,Japanese,Korean | RestaurantsTakeOut,WiFi,RestaurantsGoodForGroups,RestaurantsReservations | 1 |
+--------------------------------+-----------------------------+---------------+-------+-------------+----------+-----------+--------------+-------+--------------+---------------+-----------------+----------------+--------------+----------------+--------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+
(Output limit exceeded, 25 of 70 total rows shown)
iv. Provide the SQL code you used to create your final dataset:
SELECT Bu.name, Bu.address, Bu.city, Bu.state, Bu.postal_code,
Bu.latitude, Bu.longitude, Bu.review_count, Bu.stars,
MAX(CASE
WHEN H.hours LIKE "%monday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS monday_hours,
MAX(CASE
WHEN H.hours LIKE "%tuesday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS tuesday_hours,
MAX(CASE
WHEN H.hours LIKE "%wednesday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS wednesday_hours,
MAX(CASE
WHEN H.hours LIKE "%thursday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS thursday_hours,
MAX(CASE
WHEN H.hours LIKE "%friday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS friday_hours,
MAX(CASE
WHEN H.hours LIKE "%saturday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS saturday_hours,
MAX(CASE
WHEN H.hours LIKE "%sunday%" THEN TRIM(H.hours,'%MondayTuesWednesThursFriSatSun|%')
END) AS sunday_hours,
GROUP_CONCAT(DISTINCT(C.category)) AS categories,
GROUP_CONCAT(DISTINCT(A.name)) AS attributes,
Bu.is_open
FROM business Bu
INNER JOIN hours H
ON Bu.id = H.business_id
INNER JOIN category C
ON Bu.id = C.business_id
INNER JOIN attribute A
ON Bu.id = A.business_id
GROUP BY Bu.id