Skip to content

Latest commit

 

History

History
34 lines (26 loc) · 3.13 KB

File metadata and controls

34 lines (26 loc) · 3.13 KB

English | 简体中文

PaddleSeg 模型部署

模型版本说明

目前FastDeploy使用RKNPU2推理PPSeg支持如下模型的部署:

模型 参数文件大小 输入Shape mIoU mIoU (flip) mIoU (ms+flip)
Unet-cityscapes 52MB 1024x512 65.00% 66.02% 66.89%
PP-LiteSeg-T(STDC1)-cityscapes 31MB 1024x512 77.04% 77.73% 77.46%
PP-HumanSegV1-Lite(通用人像分割模型) 543KB 192x192 86.2% - -
PP-HumanSegV2-Lite(通用人像分割模型) 12MB 192x192 92.52% - -
PP-HumanSegV2-Mobile(通用人像分割模型) 29MB 192x192 93.13% - -
PP-HumanSegV1-Server(通用人像分割模型) 103MB 512x512 96.47% - -
Portait-PP-HumanSegV2_Lite(肖像分割模型) 3.6M 256x144 96.63% - -
FCN-HRNet-W18-cityscapes 37MB 1024x512 78.97% 79.49% 79.74%
Deeplabv3-ResNet101-OS8-cityscapes 150MB 1024x512 79.90% 80.22% 80.47%

准备PaddleSeg部署模型以及转换模型

RKNPU部署模型前需要将Paddle模型转换成RKNN模型,具体步骤如下:

模型转换example

详细部署文档