diff --git a/docs/Project.toml b/docs/Project.toml index dfa65cd1..1814eb33 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -1,2 +1,5 @@ [deps] Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" + +[compat] +Documenter = "1" diff --git a/docs/make.jl b/docs/make.jl index de3381c5..53843712 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -10,8 +10,7 @@ makedocs( "SparseArrays" => "index.md", "Sparse Linear Algebra" => "solvers.md", ]; - # strict = true, - strict = Symbol[:doctest], + warnonly = [:missing_docs, :cross_references], ) deploydocs(repo = "github.com/JuliaSparse/SparseArrays.jl.git") diff --git a/docs/src/solvers.md b/docs/src/solvers.md index b8447b4c..e633be9d 100644 --- a/docs/src/solvers.md +++ b/docs/src/solvers.md @@ -14,7 +14,10 @@ Sparse matrix solvers call functions from [SuiteSparse](http://suitesparse.com). Other solvers such as [Pardiso.jl](https://github.com/JuliaSparse/Pardiso.jl/) are available as external packages. [Arpack.jl](https://julialinearalgebra.github.io/Arpack.jl/stable/) provides `eigs` and `svds` for iterative solution of eigensystems and singular value decompositions. -These factorizations are described in more detail in [`Linear Algebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) section of the manual: +These factorizations are described in more detail in the +[`Linear Algebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) +section of the manual: + 1. [`cholesky`](@ref SparseArrays.CHOLMOD.cholesky) 2. [`ldlt`](@ref SparseArrays.CHOLMOD.ldlt) 3. [`lu`](@ref SparseArrays.UMFPACK.lu) diff --git a/src/solvers/cholmod.jl b/src/solvers/cholmod.jl index 78247620..45ab04d5 100644 --- a/src/solvers/cholmod.jl +++ b/src/solvers/cholmod.jl @@ -18,7 +18,8 @@ using LinearAlgebra using LinearAlgebra: RealHermSymComplexHerm, AdjOrTrans import LinearAlgebra: (\), AdjointFactorization, cholesky, cholesky!, det, diag, ishermitian, isposdef, - issuccess, issymmetric, ldlt, ldlt!, logdet, lowrankdowndate! + issuccess, issymmetric, ldlt, ldlt!, logdet, + lowrankdowndate, lowrankdowndate!, lowrankupdate, lowrankupdate! using SparseArrays using SparseArrays: getcolptr, AbstractSparseVecOrMat @@ -1548,7 +1549,7 @@ factor will be `L*L' == P*A*P' + C'*C` `update`: `Cint(1)` for `A + CC'`, `Cint(0)` for `A - CC'` """ -lowrankdowndate! +lowrankupdowndate! #Helper functions for rank updates lowrank_reorder(V::AbstractArray,p) = Sparse(sparse(V[p,:])) @@ -1597,7 +1598,7 @@ lowrankupdate(F::Factor{Tv}, V::AbstractArray{Tv}) where {Tv<:VTypes} = lowrankupdate!(copy(F), V) """ - lowrankupdate(F::CHOLMOD.Factor, C::AbstractArray) -> FF::CHOLMOD.Factor + lowrankdowndate(F::CHOLMOD.Factor, C::AbstractArray) -> FF::CHOLMOD.Factor Get an `LDLt` Factorization of `A + C*C'` given an `LDLt` or `LLt` factorization `F` of `A`.