Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

linearize is throwing an error when using an empty disturbance #121

Closed
1-Bart-1 opened this issue Oct 22, 2024 · 2 comments
Closed

linearize is throwing an error when using an empty disturbance #121

1-Bart-1 opened this issue Oct 22, 2024 · 2 comments

Comments

@1-Bart-1
Copy link

I don't have disturbances implemented in my model.

julia> @show nonlinmodel.buffer.d .- nonlinmodel.dop
nonlinmodel.buffer.d .- nonlinmodel.dop = Float64[]

The linearization shouldn't need to run on the disturbances, but it does, and this causes an error with the following error/stacktrace:

ERROR: LoadError: MethodError: reducing over an empty collection is not allowed; consider supplying `init` to the reducer
Stacktrace:
  [1] reduce_empty(op::Base.MappingRF{typeof(DiffEqBase.sse), typeof(Base.add_sum)}, ::Type{Float64})
    @ Base ./reduce.jl:361
  [2] reduce_empty_iter
    @ ./reduce.jl:384 [inlined]
  [3] mapreduce_empty_iter(f::Function, op::Function, itr::ForwardDiff.Partials{0, Float64}, ItrEltype::Base.HasEltype)
    @ Base ./reduce.jl:380
  [4] _mapreduce
    @ ./reduce.jl:432 [inlined]
  [5] _mapreduce_dim
    @ ./reducedim.jl:365 [inlined]
  [6] mapreduce
    @ ./reducedim.jl:357 [inlined]
  [7] _sum
    @ ./reducedim.jl:1015 [inlined]
  [8] sum(f::Function, a::ForwardDiff.Partials{0, Float64})
    @ Base ./reducedim.jl:1011
  [9] sse(x::ForwardDiff.Dual{ForwardDiff.Tag{ModelPredictiveControl.var"#myf_d0!#37"{…}, Float64}, Float64, 0})
    @ DiffEqBase ~/.julia/packages/DiffEqBase/frOsk/src/forwarddiff.jl:452
 [10] MappingRF
    @ ./reduce.jl:100 [inlined]
 [11] _foldl_impl
    @ ./reduce.jl:58 [inlined]
 [12] foldl_impl
    @ ./reduce.jl:48 [inlined]
 [13] mapfoldl_impl
    @ ./reduce.jl:44 [inlined]
 [14] _mapreduce_dim
    @ ./reducedim.jl:362 [inlined]
 [15] mapreduce
    @ ./reducedim.jl:357 [inlined]
 [16] _sum
    @ ./reducedim.jl:1015 [inlined]
 [17] sum
    @ ./reducedim.jl:1011 [inlined]
 [18] __sum
    @ ~/.julia/packages/DiffEqBase/frOsk/src/forwarddiff.jl:483 [inlined]
 [19] ODE_DEFAULT_NORM
    @ ~/.julia/packages/DiffEqBase/frOsk/src/forwarddiff.jl:462 [inlined]
 [20] __init(prob::SciMLBase.ODEProblem{…}, alg::OrdinaryDiffEqBDF.QNDF{…}, timeseries_init::Tuple{}, ts_init::Tuple{}, ks_init::Tuple{}, recompile::Type{…}; saveat::Float64, tstops::Tuple{}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::Nothing, dense::Bool, calck::Bool, dt::Float64, dtmin::Float64, dtmax::Float64, force_dtmin::Bool, adaptive::Bool, gamma::Rational{…}, abstol::Nothing, reltol::Nothing, qmin::Rational{…}, qmax::Int64, qsteady_min::Int64, qsteady_max::Rational{…}, beta1::Nothing, beta2::Nothing, qoldinit::Rational{…}, controller::Nothing, fullnormalize::Bool, failfactor::Int64, maxiters::Int64, internalnorm::typeof(DiffEqBase.ODE_DEFAULT_NORM), internalopnorm::typeof(LinearAlgebra.opnorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), verbose::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), progress_id::Symbol, userdata::Nothing, allow_extrapolation::Bool, initialize_integrator::Bool, alias_u0::Bool, alias_du0::Bool, initializealg::OrdinaryDiffEqCore.DefaultInit, kwargs::@Kwargs{})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/NnA60/src/solve.jl:329
 [21] __init (repeats 5 times)
    @ ~/.julia/packages/OrdinaryDiffEqCore/NnA60/src/solve.jl:11 [inlined]
 [22] __solve(::SciMLBase.ODEProblem{…}, ::OrdinaryDiffEqBDF.QNDF{…}; kwargs::@Kwargs{})
    @ OrdinaryDiffEqCore ~/.julia/packages/OrdinaryDiffEqCore/NnA60/src/solve.jl:6
 [23] __solve
    @ ~/.julia/packages/OrdinaryDiffEqCore/NnA60/src/solve.jl:1 [inlined]
 [24] #solve_call#44
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:612 [inlined]
 [25] solve_call
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:569 [inlined]
 [26] #solve_up#53
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1092 [inlined]
 [27] solve_up
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1078 [inlined]
 [28] #solve#51
    @ ~/.julia/packages/DiffEqBase/frOsk/src/solve.jl:1015 [inlined]
 [29] (::KitePredictiveControl.var"#next_step!#22"{})(x_plus::Base.ReinterpretArray{…}, x::Vector{…}, u::Vector{…}, prob::SciMLBase.ODEProblem{…})
    @ KitePredictiveControl ~/Code/KitePredictiveControl.jl/src/mtk_interface.jl:20
 [30] (::KitePredictiveControl.var"#f!#23"{})(x_plus::Base.ReinterpretArray{…}, x::Vector{…}, u::Vector{…}, ::Vector{…}, ::Vector{…})
    @ KitePredictiveControl ~/Code/KitePredictiveControl.jl/src/mtk_interface.jl:8
 [31] (::ModelPredictiveControl.var"#inner_solver_f!#19"{})(xnext::Vector{…}, x::Vector{…}, u::Vector{…}, d::Vector{…}, p::Vector{…})
    @ ModelPredictiveControl ~/.julia/packages/ModelPredictiveControl/0rhFm/src/model/solver.jl:61
 [32] f!
    @ ~/.julia/packages/ModelPredictiveControl/0rhFm/src/model/nonlinmodel.jl:208 [inlined]
 [33] myf_d0!
    @ ~/.julia/packages/ModelPredictiveControl/0rhFm/src/model/linearization.jl:126 [inlined]
 [34] vector_mode_dual_eval!
    @ ~/.julia/packages/ForwardDiff/PcZ48/src/apiutils.jl:31 [inlined]
 [35] vector_mode_jacobian!(result::Matrix{…}, f!::ModelPredictiveControl.var"#myf_d0!#37"{}, y::Vector{…}, x::Vector{…}, cfg::ForwardDiff.JacobianConfig{…})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/jacobian.jl:153
 [36] jacobian!(result::Matrix{…}, f!::Function, y::Vector{…}, x::Vector{…}, cfg::ForwardDiff.JacobianConfig{…}, ::Val{…})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/jacobian.jl:78
 [37] jacobian!(result::Matrix{…}, f!::Function, y::Vector{…}, x::Vector{…}, cfg::ForwardDiff.JacobianConfig{…})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/jacobian.jl:76
 [38] linearize!(linmodel::ModelPredictiveControl.LinModel{…}, model::ModelPredictiveControl.NonLinModel{…}; x::Vector{…}, u::Vector{…}, d::Vector{…})
    @ ModelPredictiveControl ~/.julia/packages/ModelPredictiveControl/0rhFm/src/model/linearization.jl:131
 [39] linearize!
    @ ~/.julia/packages/ModelPredictiveControl/0rhFm/src/model/linearization.jl:110 [inlined]
 [40] linearize(model::ModelPredictiveControl.NonLinModel{…}; kwargs::@Kwargs{})
    @ ModelPredictiveControl ~/.julia/packages/ModelPredictiveControl/0rhFm/src/model/linearization.jl:87
 [41] macro expansion
    @ ./timing.jl:279 [inlined]
 [42] ControlInterface(kite::KPS4_3L{…}; Ts::Float64, u0::Vector{…})
    @ KitePredictiveControl ~/Code/KitePredictiveControl.jl/src/KitePredictiveControl.jl:78
 [43] top-level scope
    @ ~/Code/KitePredictiveControl.jl/examples/simple.jl:15
 [44] include(fname::String)
    @ Base.MainInclude ./client.jl:489
 [45] top-level scope
    @ REPL[2]:1
in expression starting at /home/bart/Code/KitePredictiveControl.jl/examples/simple.jl:15
Some type information was truncated. Use `show(err)` to see complete types.

It would be nice if this line could be hopped over if there are no disturbances implemented:
myf_d0!(xnext0, d0) = f!(xnext0, nonlinmodel, x0, u0, d0, model.p)

@franckgaga
Copy link
Member

franckgaga commented Oct 23, 2024

What's the code that produces the error above ?

Do you have a MWE ?

Edit: I do not understand why you use both the built-in Runge kutta solver (inner_solver_f! in the stack trace above) and also a solver from OrdinaryDiffEq.jl, according to the stack trace. You should use one or the other, not both at the same time.

@1-Bart-1
Copy link
Author

Thanks, I forgot to set solver to nothing... This solved the error.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants