-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtravel_insurance_predictions.py
136 lines (112 loc) · 5.45 KB
/
travel_insurance_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
import scikitplot as skplt
import keras
from keras.layers import Dense, Dropout, Flatten
def moda(input_array):
unique_values, counts = np.unique(input_array, return_counts=True)
index = np.argmax(counts)
return int(unique_values[index])
class Classifiers:
'''Classe per allenare e predire il dataset, utilizzando i vari classificatori
Riceve come input un dizionario contenente i vari classificatori e
restituisce come output una matrice, il cui numero di colonne dipende dal numero
di classificatori utilizzati.
Ogni colonna della matrice contiente tutte le predizioni di X_test fatte con quello specifico classificatore'''
def __init__(self,clfs):
self.clfs = clfs
def fit(self,X_train,y_train):
for classifier in self.clfs:
classifier.fit(X_train,y_train)
def predict(self,X_test):
y_pred = np.zeros(shape=(X_test.shape[0],len(self.clfs)))
for n_clfs,classifier in enumerate(self.clfs):
y_pred[:,n_clfs] = classifier.predict(X_test)
return y_pred
if __name__ == '__main__':
path = "../Data/travel_insurance.csv"
dataset = pd.read_csv(path,index_col=0)
''' INFO SUL DATASET'''
print(f'Shape del Dataset: {dataset.shape} \n')
print(f'Colonne del Dataset: {dataset.columns} \n')
print('INFO \n',dataset.info())
print('DESCRIBE \n',dataset.describe().to_string())
print(f'Valori nulli di ogni colonna \n {dataset.isna().sum()}')
''' FEATURES ENCODING'''
dataset['Employment Type'].replace('Government Sector',0,inplace=True)
dataset['Employment Type'].replace('Private Sector/Self Employed', 1, inplace=True)
dataset['GraduateOrNot'].replace('No', 0, inplace=True)
dataset['GraduateOrNot'].replace('Yes', 1, inplace=True)
dataset['FrequentFlyer'].replace('No', 0, inplace=True)
dataset['FrequentFlyer'].replace('Yes', 1, inplace=True)
dataset['EverTravelledAbroad'].replace('No', 0, inplace=True)
dataset['EverTravelledAbroad'].replace('Yes', 1, inplace=True)
''' HEATMAP CORRELAZIONI'''
plt.figure(figsize=(10, 6))
sns.heatmap(dataset.corr(), cmap="YlGnBu", annot=True, fmt=".2f",square=True)
plt.show()
X = np.array(dataset.iloc[:, :-1])
y = np.array(dataset.iloc[:, -1])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
#SCALING Normale Standard
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train=scaler.transform(X_train)
X_test=scaler.transform(X_test)
classifiers = {KNeighborsClassifier(n_neighbors=7):'KNN k=7',
DecisionTreeClassifier(criterion='gini'):'Decision Tree gini',
DecisionTreeClassifier(criterion='entropy'):'Decision Tree entropy',
SVC(kernel='linear'):'SVC linear',
SVC(kernel='rbf',C=100, gamma=1):'SVC rbf C=100-gamma=1',
RandomForestClassifier(criterion='gini'):'Random Forest gini',
RandomForestClassifier(criterion='entropy'):'Random Forest entropy'}
'''uso la classe creata precedentemente per allenare e fare le predizioni
utilizzando i classificatori riportati qui sopra'''
models = Classifiers(classifiers)
models.fit(X_train,y_train)
y_preds = models.predict(X_test)
nn = keras.Sequential([
Flatten(input_dim=8),
Dense(units=400, activation='relu'),
Dense(units=200, activation='relu'),
Dense(units=50, activation='relu'),
Dense(units=10, activation='relu'),
Dropout(0.10),
Dense(units=1, activation='sigmoid')])
nn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
nn.fit(X_train, y_train, batch_size=20, epochs=20)
nn_pred = nn.predict(X_test)
''' METRICHE DI VALUTAZIONE '''
print('-------------------------------------------------------------------')
for ix,col in enumerate(classifiers):
acc = accuracy_score(y_test,y_preds[:,ix])
print(f'Accuratezza {classifiers[col]} >>: {100*acc:.2f}%')
comb_pred = np.zeros(shape=(X_test.shape[0]))
for row in range(comb_pred.shape[0]):
comb_pred[row] = moda(y_preds[row,:])
comb_acc = accuracy_score(y_test,comb_pred)
print(f'Accuratezza della Moda delle predizioni >>: {100 * comb_acc:.2f}%')
nn_pred = np.around(nn_pred,decimals=0)
nn_pred = np.squeeze(nn_pred)
print(f'Accuratezza Rete Neurale >>: {np.mean(nn_pred == y_test) * 100: .2f} %')
print('-------------------------------------------------------------------')
report = classification_report(y_test,comb_pred)
print('REPORT \n',report)
''' MATRICE DI CONFUSIONE'''
y_test=np.where(y_test==1,'Buy','Does Not Buy')
comb_pred=np.where(comb_pred == 1, 'Buy', 'Does Not Buy')
skplt.metrics.plot_confusion_matrix(y_test, comb_pred)
plt.title('Matrice di Confusione')
plt.xlabel('Label Predette')
plt.ylabel('Label Reali')
plt.show()