-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrees.cs
executable file
·1069 lines (935 loc) · 44 KB
/
trees.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// trees.cs -- output deflated data using Huffman coding
// Copyright (C) 1995-2010 Jean-loup Gailly
// Copyright (C) 2007-2011 by the Authors
// For conditions of distribution and use, see copyright notice in License.txt
// ALGORITHM
//
// The "deflation" process uses several Huffman trees. The more
// common source values are represented by shorter bit sequences.
//
// Each code tree is stored in a compressed form which is itself
// a Huffman encoding of the lengths of all the code strings (in
// ascending order by source values). The actual code strings are
// reconstructed from the lengths in the inflate process, as described
// in the deflate specification.
//
// REFERENCES
//
// Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
// Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
//
// Storer, James A.
// Data Compression: Methods and Theory, pp. 49-50.
// Computer Science Press, 1988. ISBN 0-7167-8156-5.
//
// Sedgewick, R.
// Algorithms, p290.
// Addison-Wesley, 1983. ISBN 0-201-06672-6.
using System;
namespace Free.Ports.zLib
{
public static partial class zlib
{
// ===========================================================================
// Constants
//
// Bit length codes must not exceed MAX_BL_BITS bits
private const int MAX_BL_BITS=7;
// end of block literal code
private const int END_BLOCK=256;
// repeat previous bit length 3-6 times (2 bits of repeat count)
private const int REP_3_6=16;
// repeat a zero length 3-10 times (3 bits of repeat count)
private const int REPZ_3_10=17;
// repeat a zero length 11-138 times (7 bits of repeat count)
private const int REPZ_11_138=18;
// extra bits for each length code
private static readonly int[] extra_lbits=new int[LENGTH_CODES] { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
// extra bits for each distance code
private static readonly int[] extra_dbits=new int[D_CODES] { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };
// extra bits for each bit length code
private static readonly int[] extra_blbits=new int[BL_CODES] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.
private static readonly byte[] bl_order=new byte[BL_CODES] { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
// Number of bits used within bi_buf. (bi_buf might be implemented on
// more than 16 bits on some systems.)
private const int Buf_size=8*2*sizeof(byte);
// ===========================================================================
// Local data. These are initialized only once.
// see definition of array dist_code below
private const int DIST_CODE_LEN=512;
#region Tables
private static readonly ct_data[] static_ltree=new ct_data[L_CODES+2]
{
new ct_data( 12, 8), new ct_data(140, 8), new ct_data( 76, 8), new ct_data(204, 8),
new ct_data( 44, 8), new ct_data(172, 8), new ct_data(108, 8), new ct_data(236, 8),
new ct_data( 28, 8), new ct_data(156, 8), new ct_data( 92, 8), new ct_data(220, 8),
new ct_data( 60, 8), new ct_data(188, 8), new ct_data(124, 8), new ct_data(252, 8),
new ct_data( 2, 8), new ct_data(130, 8), new ct_data( 66, 8), new ct_data(194, 8),
new ct_data( 34, 8), new ct_data(162, 8), new ct_data( 98, 8), new ct_data(226, 8),
new ct_data( 18, 8), new ct_data(146, 8), new ct_data( 82, 8), new ct_data(210, 8),
new ct_data( 50, 8), new ct_data(178, 8), new ct_data(114, 8), new ct_data(242, 8),
new ct_data( 10, 8), new ct_data(138, 8), new ct_data( 74, 8), new ct_data(202, 8),
new ct_data( 42, 8), new ct_data(170, 8), new ct_data(106, 8), new ct_data(234, 8),
new ct_data( 26, 8), new ct_data(154, 8), new ct_data( 90, 8), new ct_data(218, 8),
new ct_data( 58, 8), new ct_data(186, 8), new ct_data(122, 8), new ct_data(250, 8),
new ct_data( 6, 8), new ct_data(134, 8), new ct_data( 70, 8), new ct_data(198, 8),
new ct_data( 38, 8), new ct_data(166, 8), new ct_data(102, 8), new ct_data(230, 8),
new ct_data( 22, 8), new ct_data(150, 8), new ct_data( 86, 8), new ct_data(214, 8),
new ct_data( 54, 8), new ct_data(182, 8), new ct_data(118, 8), new ct_data(246, 8),
new ct_data( 14, 8), new ct_data(142, 8), new ct_data( 78, 8), new ct_data(206, 8),
new ct_data( 46, 8), new ct_data(174, 8), new ct_data(110, 8), new ct_data(238, 8),
new ct_data( 30, 8), new ct_data(158, 8), new ct_data( 94, 8), new ct_data(222, 8),
new ct_data( 62, 8), new ct_data(190, 8), new ct_data(126, 8), new ct_data(254, 8),
new ct_data( 1, 8), new ct_data(129, 8), new ct_data( 65, 8), new ct_data(193, 8),
new ct_data( 33, 8), new ct_data(161, 8), new ct_data( 97, 8), new ct_data(225, 8),
new ct_data( 17, 8), new ct_data(145, 8), new ct_data( 81, 8), new ct_data(209, 8),
new ct_data( 49, 8), new ct_data(177, 8), new ct_data(113, 8), new ct_data(241, 8),
new ct_data( 9, 8), new ct_data(137, 8), new ct_data( 73, 8), new ct_data(201, 8),
new ct_data( 41, 8), new ct_data(169, 8), new ct_data(105, 8), new ct_data(233, 8),
new ct_data( 25, 8), new ct_data(153, 8), new ct_data( 89, 8), new ct_data(217, 8),
new ct_data( 57, 8), new ct_data(185, 8), new ct_data(121, 8), new ct_data(249, 8),
new ct_data( 5, 8), new ct_data(133, 8), new ct_data( 69, 8), new ct_data(197, 8),
new ct_data( 37, 8), new ct_data(165, 8), new ct_data(101, 8), new ct_data(229, 8),
new ct_data( 21, 8), new ct_data(149, 8), new ct_data( 85, 8), new ct_data(213, 8),
new ct_data( 53, 8), new ct_data(181, 8), new ct_data(117, 8), new ct_data(245, 8),
new ct_data( 13, 8), new ct_data(141, 8), new ct_data( 77, 8), new ct_data(205, 8),
new ct_data( 45, 8), new ct_data(173, 8), new ct_data(109, 8), new ct_data(237, 8),
new ct_data( 29, 8), new ct_data(157, 8), new ct_data( 93, 8), new ct_data(221, 8),
new ct_data( 61, 8), new ct_data(189, 8), new ct_data(125, 8), new ct_data(253, 8),
new ct_data( 19, 9), new ct_data(275, 9), new ct_data(147, 9), new ct_data(403, 9),
new ct_data( 83, 9), new ct_data(339, 9), new ct_data(211, 9), new ct_data(467, 9),
new ct_data( 51, 9), new ct_data(307, 9), new ct_data(179, 9), new ct_data(435, 9),
new ct_data(115, 9), new ct_data(371, 9), new ct_data(243, 9), new ct_data(499, 9),
new ct_data( 11, 9), new ct_data(267, 9), new ct_data(139, 9), new ct_data(395, 9),
new ct_data( 75, 9), new ct_data(331, 9), new ct_data(203, 9), new ct_data(459, 9),
new ct_data( 43, 9), new ct_data(299, 9), new ct_data(171, 9), new ct_data(427, 9),
new ct_data(107, 9), new ct_data(363, 9), new ct_data(235, 9), new ct_data(491, 9),
new ct_data( 27, 9), new ct_data(283, 9), new ct_data(155, 9), new ct_data(411, 9),
new ct_data( 91, 9), new ct_data(347, 9), new ct_data(219, 9), new ct_data(475, 9),
new ct_data( 59, 9), new ct_data(315, 9), new ct_data(187, 9), new ct_data(443, 9),
new ct_data(123, 9), new ct_data(379, 9), new ct_data(251, 9), new ct_data(507, 9),
new ct_data( 7, 9), new ct_data(263, 9), new ct_data(135, 9), new ct_data(391, 9),
new ct_data( 71, 9), new ct_data(327, 9), new ct_data(199, 9), new ct_data(455, 9),
new ct_data( 39, 9), new ct_data(295, 9), new ct_data(167, 9), new ct_data(423, 9),
new ct_data(103, 9), new ct_data(359, 9), new ct_data(231, 9), new ct_data(487, 9),
new ct_data( 23, 9), new ct_data(279, 9), new ct_data(151, 9), new ct_data(407, 9),
new ct_data( 87, 9), new ct_data(343, 9), new ct_data(215, 9), new ct_data(471, 9),
new ct_data( 55, 9), new ct_data(311, 9), new ct_data(183, 9), new ct_data(439, 9),
new ct_data(119, 9), new ct_data(375, 9), new ct_data(247, 9), new ct_data(503, 9),
new ct_data( 15, 9), new ct_data(271, 9), new ct_data(143, 9), new ct_data(399, 9),
new ct_data( 79, 9), new ct_data(335, 9), new ct_data(207, 9), new ct_data(463, 9),
new ct_data( 47, 9), new ct_data(303, 9), new ct_data(175, 9), new ct_data(431, 9),
new ct_data(111, 9), new ct_data(367, 9), new ct_data(239, 9), new ct_data(495, 9),
new ct_data( 31, 9), new ct_data(287, 9), new ct_data(159, 9), new ct_data(415, 9),
new ct_data( 95, 9), new ct_data(351, 9), new ct_data(223, 9), new ct_data(479, 9),
new ct_data( 63, 9), new ct_data(319, 9), new ct_data(191, 9), new ct_data(447, 9),
new ct_data(127, 9), new ct_data(383, 9), new ct_data(255, 9), new ct_data(511, 9),
new ct_data( 0, 7), new ct_data( 64, 7), new ct_data( 32, 7), new ct_data( 96, 7),
new ct_data( 16, 7), new ct_data( 80, 7), new ct_data( 48, 7), new ct_data(112, 7),
new ct_data( 8, 7), new ct_data( 72, 7), new ct_data( 40, 7), new ct_data(104, 7),
new ct_data( 24, 7), new ct_data( 88, 7), new ct_data( 56, 7), new ct_data(120, 7),
new ct_data( 4, 7), new ct_data( 68, 7), new ct_data( 36, 7), new ct_data(100, 7),
new ct_data( 20, 7), new ct_data( 84, 7), new ct_data( 52, 7), new ct_data(116, 7),
new ct_data( 3, 8), new ct_data(131, 8), new ct_data( 67, 8), new ct_data(195, 8),
new ct_data( 35, 8), new ct_data(163, 8), new ct_data( 99, 8), new ct_data(227, 8)
};
private static readonly ct_data[] static_dtree=new ct_data[D_CODES]
{
new ct_data( 0, 5), new ct_data(16, 5), new ct_data( 8, 5), new ct_data(24, 5), new ct_data( 4, 5),
new ct_data(20, 5), new ct_data(12, 5), new ct_data(28, 5), new ct_data( 2, 5), new ct_data(18, 5),
new ct_data(10, 5), new ct_data(26, 5), new ct_data( 6, 5), new ct_data(22, 5), new ct_data(14, 5),
new ct_data(30, 5), new ct_data( 1, 5), new ct_data(17, 5), new ct_data( 9, 5), new ct_data(25, 5),
new ct_data( 5, 5), new ct_data(21, 5), new ct_data(13, 5), new ct_data(29, 5), new ct_data( 3, 5),
new ct_data(19, 5), new ct_data(11, 5), new ct_data(27, 5), new ct_data( 7, 5), new ct_data(23, 5)
};
private static readonly byte[] _dist_code=new byte[DIST_CODE_LEN]
{
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
};
private static readonly byte[] _length_code=new byte[MAX_MATCH-MIN_MATCH+1]
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
};
private static readonly int[] base_length=new int[LENGTH_CODES]
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 0
};
private static readonly int[] base_dist=new int[D_CODES]
{
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
};
#endregion
class static_tree_desc
{
public readonly ct_data[] static_tree; // static tree or NULL
public readonly int[] extra_bits; // extra bits for each code or NULL
public int extra_base; // base index for extra_bits
public int elems; // max number of elements in the tree
public int max_length; // max bit length for the codes
public static_tree_desc(ct_data[] static_tree, int[] extra_bits, int extra_base, int elems, int max_length)
{
this.static_tree=static_tree;
this.extra_bits=extra_bits;
this.extra_base=extra_base;
this.elems=elems;
this.max_length=max_length;
}
}
private static readonly static_tree_desc static_l_desc=new static_tree_desc(static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS);
private static readonly static_tree_desc static_d_desc=new static_tree_desc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
private static readonly static_tree_desc static_bl_desc=new static_tree_desc(null, extra_blbits, 0, BL_CODES, MAX_BL_BITS);
// ===========================================================================
// Local (static) routines in this file.
//
// Send a code of the given tree. c and tree must not have side effects
//#define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
static void send_code(deflate_state s, int c, ct_data[] tree)
{
ushort value=tree[c].Code;
ushort len=tree[c].Len;
if(s.bi_valid>(int)Buf_size-len)
{
int val=value;
s.bi_buf|=(ushort)(val<<s.bi_valid);
//was put_short(s, s.bi_buf);
s.pending_buf[s.pending++]=(byte)(s.bi_buf&0xff);
s.pending_buf[s.pending++]=(byte)((ushort)s.bi_buf>>8);
s.bi_buf=(ushort)(val>>(Buf_size-s.bi_valid));
s.bi_valid+=len-Buf_size;
}
else
{
s.bi_buf|=(ushort)(value<<s.bi_valid);
s.bi_valid+=len;
}
}
// ===========================================================================
// Output a short LSB first on the stream.
// IN assertion: there is enough room in pendingBuf.
//#define put_short(s, w) { \
// put_byte(s, (unsigned char)((w) & 0xff)); \
// put_byte(s, (unsigned char)((unsigned short)(w) >> 8)); \
//}
// ===========================================================================
// Send a value on a given number of bits.
// IN assertion: length <= 16 and value fits in length bits.
//#define send_bits(s, value, length) { \
// int len = length; \
// if(s.bi_valid > (int)Buf_size - len) { \
// int val = value; \
// s.bi_buf |= (val << s.bi_valid); \
// // put_short(s, s.bi_buf); \
// s.pending_buf[s.pending++] = (unsigned char)(s.bi_buf & 0xff);\
// s.pending_buf[s.pending++] = (unsigned char)((unsigned short)s.bi_buf >> 8);\
// s.bi_buf = (unsigned short)val >> (Buf_size - s.bi_valid); \
// s.bi_valid += len - Buf_size; \
// } else { \
// s.bi_buf |= (value) << s.bi_valid; \
// s.bi_valid += len; \
// } \
// }
static void send_bits(deflate_state s, int value, int length)
{
int len=length;
if(s.bi_valid>(int)Buf_size-len)
{
int val=value;
s.bi_buf|=(ushort)(val<<s.bi_valid);
//was put_short(s, s.bi_buf);
s.pending_buf[s.pending++]=(byte)(s.bi_buf&0xff);
s.pending_buf[s.pending++]=(byte)((ushort)s.bi_buf>>8);
s.bi_buf=(ushort)(val>>(Buf_size-s.bi_valid));
s.bi_valid+=len-Buf_size;
}
else
{
s.bi_buf|=(ushort)(value<<s.bi_valid);
s.bi_valid+=len;
}
}
// the arguments must not have side effects
// ===========================================================================
// Initialize the tree data structures for a new zlib stream.
static void _tr_init(deflate_state s)
{
s.l_desc.dyn_tree=s.dyn_ltree;
s.l_desc.stat_desc=static_l_desc;
s.d_desc.dyn_tree=s.dyn_dtree;
s.d_desc.stat_desc=static_d_desc;
s.bl_desc.dyn_tree=s.bl_tree;
s.bl_desc.stat_desc=static_bl_desc;
s.bi_buf=0;
s.bi_valid=0;
s.last_eob_len=8; // enough lookahead for inflate
// Initialize the first block of the first file:
init_block(s);
}
// ===========================================================================
// Initialize a new block.
static void init_block(deflate_state s)
{
// Initialize the trees.
for(int n=0; n<L_CODES; n++) s.dyn_ltree[n].Freq=0;
for(int n=0; n<D_CODES; n++) s.dyn_dtree[n].Freq=0;
for(int n=0; n<BL_CODES; n++) s.bl_tree[n].Freq=0;
s.dyn_ltree[END_BLOCK].Freq=1;
s.opt_len=s.static_len=0;
s.last_lit=s.matches=0;
}
// Index within the heap array of least frequent node in the Huffman tree
private const int SMALLEST=1;
// ===========================================================================
// Remove the smallest element from the heap and recreate the heap with
// one less element. Updates heap and heap_len.
//#define pqremove(s, tree, top) \
// top = s.heap[SMALLEST]; \
// s.heap[SMALLEST] = s.heap[s.heap_len--]; \
// pqdownheap(s, tree, SMALLEST);
// ===========================================================================
// Compares to subtrees, using the tree depth as tie breaker when
// the subtrees have equal frequency. This minimizes the worst case length.
//#define smaller(tree, n, m, depth) \
// (tree[n].Freq < tree[m].Freq || \
// (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
// ===========================================================================
// Restore the heap property by moving down the tree starting at node k,
// exchanging a node with the smallest of its two sons if necessary, stopping
// when the heap property is re-established (each father smaller than its
// two sons).
// tree: the tree to restore
// k: node to move down
static void pqdownheap(deflate_state s, ct_data[] tree, int k)
{
int v=s.heap[k];
int j=k<<1; // left son of k
while(j<=s.heap_len)
{
// Set j to the smallest of the two sons:
//was if (j < s.heap_len && smaller(tree, s.heap[j+1], s.heap[j], s.depth))
if(j<s.heap_len&&(tree[s.heap[j+1]].Freq<tree[s.heap[j]].Freq||
(tree[s.heap[j+1]].Freq==tree[s.heap[j]].Freq&&s.depth[s.heap[j+1]]<=s.depth[s.heap[j]]))) j++;
// Exit if v is smaller than both sons
//was if (smaller(tree, v, s.heap[j], s.depth)) break;
if(tree[v].Freq<tree[s.heap[j]].Freq||
(tree[v].Freq==tree[s.heap[j]].Freq&&s.depth[v]<=s.depth[s.heap[j]])) break;
// Exchange v with the smallest son
s.heap[k]=s.heap[j]; k=j;
// And continue down the tree, setting j to the left son of k
j<<=1;
}
s.heap[k]=v;
}
// ===========================================================================
// Compute the optimal bit lengths for a tree and update the total bit length
// for the current block.
// IN assertion: the fields freq and dad are set, heap[heap_max] and
// above are the tree nodes sorted by increasing frequency.
// OUT assertions: the field len is set to the optimal bit length, the
// array bl_count contains the frequencies for each bit length.
// The length opt_len is updated; static_len is also updated if stree is
// not null.
// desc: the tree descriptor
static void gen_bitlen(deflate_state s, ref tree_desc desc)
{
ct_data[] tree=desc.dyn_tree;
int max_code=desc.max_code;
ct_data[] stree=desc.stat_desc.static_tree;
int[] extra=desc.stat_desc.extra_bits;
int @base=desc.stat_desc.extra_base;
int max_length=desc.stat_desc.max_length;
int h; // heap index
int n, m; // iterate over the tree elements
int bits; // bit length
int xbits; // extra bits
ushort f; // frequency
int overflow=0; // number of elements with bit length too large
for(bits=0; bits<=MAX_BITS; bits++) s.bl_count[bits]=0;
// In a first pass, compute the optimal bit lengths (which may
// overflow in the case of the bit length tree).
tree[s.heap[s.heap_max]].Len=0; // root of the heap
for(h=s.heap_max+1; h<HEAP_SIZE; h++)
{
n=s.heap[h];
bits=tree[tree[n].Dad].Len+1;
if(bits>max_length) { bits=max_length; overflow++; }
tree[n].Len=(ushort)bits;
// We overwrite tree[n].Dad which is no longer needed
if(n>max_code) continue; // not a leaf node
s.bl_count[bits]++;
xbits=0;
if(n>=@base) xbits=extra[n-@base];
f=tree[n].Freq;
s.opt_len+=(uint)(f*(bits+xbits));
if(stree!=null) s.static_len+=(uint)(f*(stree[n].Len+xbits));
}
if(overflow==0) return;
//Trace((stderr,"\nbit length overflow\n"));
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do
{
bits=max_length-1;
while(s.bl_count[bits]==0) bits--;
s.bl_count[bits]--; // move one leaf down the tree
s.bl_count[bits+1]+=2; // move one overflow item as its brother
s.bl_count[max_length]--;
// The brother of the overflow item also moves one step up,
// but this does not affect bl_count[max_length]
overflow-=2;
} while(overflow>0);
// Now recompute all bit lengths, scanning in increasing frequency.
// h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
// lengths instead of fixing only the wrong ones. This idea is taken
// from 'ar' written by Haruhiko Okumura.)
for(bits=max_length; bits!=0; bits--)
{
n=s.bl_count[bits];
while(n!=0)
{
m=s.heap[--h];
if(m>max_code) continue;
if((uint)tree[m].Len!=(uint)bits)
{
//Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
s.opt_len+=((uint)bits-tree[m].Len)*tree[m].Freq;
tree[m].Len=(ushort)bits;
}
n--;
}
}
}
// ===========================================================================
// Generate the codes for a given tree and bit counts (which need not be
// optimal).
// IN assertion: the array bl_count contains the bit length statistics for
// the given tree and the field len is set for all tree elements.
// OUT assertion: the field code is set for all tree elements of non
// zero code length.
// tree: the tree to decorate
// max_code: largest code with non zero frequency
// bl_count: number of codes at each bit length
static void gen_codes(ct_data[] tree, int max_code, ushort[] bl_count)
{
ushort[] next_code=new ushort[MAX_BITS+1]; // next code value for each bit length
ushort code=0; // running code value
int bits; // bit index
int n; // code index
// The distribution counts are first used to generate the code values
// without bit reversal.
for(bits=1; bits<=MAX_BITS; bits++) next_code[bits]=code=(ushort)((code+bl_count[bits-1])<<1);
// Check that the bit counts in bl_count are consistent. The last code
// must be all ones.
//Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, "inconsistent bit counts");
//Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
for(n=0; n<=max_code; n++)
{
int len=tree[n].Len;
if(len==0) continue;
// Now reverse the bits
tree[n].Code=bi_reverse(next_code[len]++, len);
//Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
}
// ===========================================================================
// Construct one Huffman tree and assigns the code bit strings and lengths.
// Update the total bit length for the current block.
// IN assertion: the field freq is set for all tree elements.
// OUT assertions: the fields len and code are set to the optimal bit length
// and corresponding code. The length opt_len is updated; static_len is
// also updated if stree is not null. The field max_code is set.
// desc: the tree descriptor
static void build_tree(deflate_state s, ref tree_desc desc)
{
ct_data[] tree=desc.dyn_tree;
ct_data[] stree=desc.stat_desc.static_tree;
int elems=desc.stat_desc.elems;
int n, m; // iterate over heap elements
int max_code=-1; // largest code with non zero frequency
int node; // new node being created
// Construct the initial heap, with least frequent element in
// heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
// heap[0] is not used.
s.heap_len=0;
s.heap_max=HEAP_SIZE;
for(n=0; n<elems; n++)
{
if(tree[n].Freq!=0)
{
s.heap[++(s.heap_len)]=max_code=n;
s.depth[n]=0;
}
else tree[n].Len=0;
}
// The pkzip format requires that at least one distance code exists,
// and that at least one bit should be sent even if there is only one
// possible code. So to avoid special checks later on we force at least
// two codes of non zero frequency.
while(s.heap_len<2)
{
node=s.heap[++(s.heap_len)]=(max_code<2?++max_code:0);
tree[node].Freq=1;
s.depth[node]=0;
s.opt_len--; if(stree!=null) s.static_len-=stree[node].Len;
// node is 0 or 1 so it does not have extra bits
}
desc.max_code=max_code;
// The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
// establish sub-heaps of increasing lengths:
for(n=s.heap_len/2; n>=1; n--) pqdownheap(s, tree, n);
// Construct the Huffman tree by repeatedly combining the least two
// frequent nodes.
node=elems; // next internal node of the tree
do
{
//was pqremove(s, tree, n); // n = node of least frequency
n=s.heap[SMALLEST];
s.heap[SMALLEST]=s.heap[s.heap_len--];
pqdownheap(s, tree, SMALLEST);
m=s.heap[SMALLEST]; // m = node of next least frequency
s.heap[--(s.heap_max)]=n; // keep the nodes sorted by frequency
s.heap[--(s.heap_max)]=m;
// Create a new node father of n and m
tree[node].Freq=(ushort)(tree[n].Freq+tree[m].Freq);
s.depth[node]=(byte)((s.depth[n]>=s.depth[m]?s.depth[n]:s.depth[m])+1);
tree[n].Dad=tree[m].Dad=(ushort)node;
// and insert the new node in the heap
s.heap[SMALLEST]=node++;
pqdownheap(s, tree, SMALLEST);
} while(s.heap_len>=2);
s.heap[--(s.heap_max)]=s.heap[SMALLEST];
// At this point, the fields freq and dad are set. We can now
// generate the bit lengths.
gen_bitlen(s, ref desc);
// The field len is now set, we can generate the bit codes
gen_codes(tree, max_code, s.bl_count);
}
// ===========================================================================
// Scan a literal or distance tree to determine the frequencies of the codes
// in the bit length tree.
// tree: the tree to be scanned
// max_code: and its largest code of non zero frequency
static void scan_tree(deflate_state s, ct_data[] tree, int max_code)
{
int n; // iterates over all tree elements
int prevlen=-1; // last emitted length
int curlen; // length of current code
int nextlen=tree[0].Len; // length of next code
int count=0; // repeat count of the current code
int max_count=7; // max repeat count
int min_count=4; // min repeat count
if(nextlen==0) { max_count=138; min_count=3; }
tree[max_code+1].Len=(ushort)0xffff; // guard
for(n=0; n<=max_code; n++)
{
curlen=nextlen; nextlen=tree[n+1].Len;
if(++count<max_count&&curlen==nextlen) continue;
if(count<min_count) s.bl_tree[curlen].Freq+=(ushort)count;
else if(curlen!=0)
{
if(curlen!=prevlen) s.bl_tree[curlen].Freq++;
s.bl_tree[REP_3_6].Freq++;
}
else if(count<=10) s.bl_tree[REPZ_3_10].Freq++;
else s.bl_tree[REPZ_11_138].Freq++;
count=0; prevlen=curlen;
if(nextlen==0) { max_count=138; min_count=3; }
else if(curlen==nextlen) { max_count=6; min_count=3; }
else { max_count=7; min_count=4; }
}
}
// ===========================================================================
// Send a literal or distance tree in compressed form, using the codes in bl_tree.
// tree: the tree to be scanned
// max_code: and its largest code of non zero frequency
static void send_tree(deflate_state s, ct_data[] tree, int max_code)
{
int n; // iterates over all tree elements
int prevlen=-1; // last emitted length
int curlen; // length of current code
int nextlen=tree[0].Len; // length of next code
int count=0; // repeat count of the current code
int max_count=7; // max repeat count
int min_count=4; // min repeat count
// tree[max_code+1].Len = -1;
// guard already set
if(nextlen==0) { max_count=138; min_count=3; }
for(n=0; n<=max_code; n++)
{
curlen=nextlen; nextlen=tree[n+1].Len;
if(++count<max_count&&curlen==nextlen) continue;
if(count<min_count)
{
do { send_code(s, curlen, s.bl_tree); } while(--count!=0);
}
else if(curlen!=0)
{
if(curlen!=prevlen) { send_code(s, curlen, s.bl_tree); count--; }
//Assert(count>=3&&count<=6, " 3_6?");
send_code(s, REP_3_6, s.bl_tree); send_bits(s, count-3, 2);
}
else if(count<=10) { send_code(s, REPZ_3_10, s.bl_tree); send_bits(s, count-3, 3); }
else { send_code(s, REPZ_11_138, s.bl_tree); send_bits(s, count-11, 7); }
count=0; prevlen=curlen;
if(nextlen==0) { max_count=138; min_count=3; }
else if(curlen==nextlen) { max_count=6; min_count=3; }
else { max_count=7; min_count=4; }
}
}
// ===========================================================================
// Construct the Huffman tree for the bit lengths and return the index in
// bl_order of the last bit length code to send.
static int build_bl_tree(deflate_state s)
{
int max_blindex; // index of last bit length code of non zero freq
// Determine the bit length frequencies for literal and distance trees
scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
// Build the bit length tree:
build_tree(s, ref s.bl_desc);
// opt_len now includes the length of the tree representations, except
// the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
// Determine the number of bit length codes to send. The pkzip format
// requires that at least 4 bit length codes be sent. (appnote.txt says
// 3 but the actual value used is 4.)
for(max_blindex=BL_CODES-1; max_blindex>=3; max_blindex--)
{
if(s.bl_tree[bl_order[max_blindex]].Len!=0) break;
}
// Update opt_len to include the bit length tree and counts
s.opt_len+=(uint)(3*(max_blindex+1)+5+5+4);
//Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s.opt_len, s.static_len));
return max_blindex;
}
// ===========================================================================
// Send the header for a block using dynamic Huffman trees: the counts, the
// lengths of the bit length codes, the literal tree and the distance tree.
// IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
// lcodes, dcodes, blcodes: number of codes for each tree
static void send_all_trees(deflate_state s, int lcodes, int dcodes, int blcodes)
{
int rank; // index in bl_order
//Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
//Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes");
//Tracev((stderr, "\nbl counts: "));
send_bits(s, lcodes-257, 5); // not +255 as stated in appnote.txt
send_bits(s, dcodes-1, 5);
send_bits(s, blcodes-4, 4); // not -3 as stated in appnote.txt
for(rank=0; rank<blcodes; rank++)
{
//Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
send_bits(s, s.bl_tree[bl_order[rank]].Len, 3);
}
//Tracev((stderr, "\nbl tree: sent %ld", s.bits_sent));
send_tree(s, s.dyn_ltree, lcodes-1); // literal tree
//Tracev((stderr, "\nlit tree: sent %ld", s.bits_sent));
send_tree(s, s.dyn_dtree, dcodes-1); // distance tree
//Tracev((stderr, "\ndist tree: sent %ld", s.bits_sent));
}
// ===========================================================================
// Send a stored block
// buf: input block
// stored_len: length of input block
// last: one if this is the last block for a file
static void _tr_stored_block(deflate_state s, byte[] buf, uint stored_len, int last)
{
send_bits(s, (STORED_BLOCK<<1)+last, 3); // send block type
copy_block(s, buf, 0, stored_len, 1); // with header
}
static void _tr_stored_block(deflate_state s, byte[] buf, int buf_ind, uint stored_len, int last)
{
send_bits(s, (STORED_BLOCK<<1)+last, 3); // send block type
copy_block(s, buf, buf_ind, stored_len, 1); // with header
}
// ===========================================================================
// Send one empty static block to give enough lookahead for inflate.
// This takes 10 bits, of which 7 may remain in the bit buffer.
// The current inflate code requires 9 bits of lookahead. If the
// last two codes for the previous block (real code plus EOB) were coded
// on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
// the last real code. In this case we send two empty static blocks instead
// of one. (There are no problems if the previous block is stored or fixed.)
// To simplify the code, we assume the worst case of last real code encoded
// on one bit only.
static void _tr_align(deflate_state s)
{
send_bits(s, STATIC_TREES<<1, 3);
send_code(s, END_BLOCK, static_ltree);
bi_flush(s);
// Of the 10 bits for the empty block, we have already sent
// (10 - bi_valid) bits. The lookahead for the last real code (before
// the EOB of the previous block) was thus at least one plus the length
// of the EOB plus what we have just sent of the empty static block.
if(1+s.last_eob_len+10-s.bi_valid<9)
{
send_bits(s, STATIC_TREES<<1, 3);
send_code(s, END_BLOCK, static_ltree);
bi_flush(s);
}
s.last_eob_len=7;
}
// ===========================================================================
// Determine the best encoding for the current block: dynamic trees, static
// trees or store, and output the encoded block to the zip file.
// buf: input block, or NULL if too old
// stored_len: length of input block
// last: one if this is the last block for a file
static void _tr_flush_block(deflate_state s, byte[] buf, int buf_ind, uint stored_len, int last)
{
uint opt_lenb, static_lenb; // opt_len and static_len in bytes
int max_blindex=0; // index of last bit length code of non zero freq
// Build the Huffman trees unless a stored block is forced
if(s.level>0)
{
// Construct the literal and distance trees
build_tree(s, ref s.l_desc);
//Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s.opt_len, s.static_len));
build_tree(s, ref s.d_desc);
//Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s.opt_len, s.static_len));
// At this point, opt_len and static_len are the total bit lengths of
// the compressed block data, excluding the tree representations.
// Build the bit length tree for the above two trees, and get the index
// in bl_order of the last bit length code to send.
max_blindex=build_bl_tree(s);
// Determine the best encoding. Compute the block lengths in bytes.
opt_lenb=(s.opt_len+3+7)>>3;
static_lenb=(s.static_len+3+7)>>3;
//Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s.opt_len, static_lenb, s.static_len, stored_len, s.last_lit));
if(static_lenb<=opt_lenb) opt_lenb=static_lenb;
}
else
{
//Assert(buf!=(char*)0, "lost buf");
opt_lenb=static_lenb=stored_len+5; // force a stored block
}
if(stored_len+4<=opt_lenb&&buf!=null)
{
// 4: two words for the lengths
// The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
// Otherwise we can't have processed more than WSIZE input bytes since
// the last block flush, because compression would have been
// successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
// transform a block into a stored block.
_tr_stored_block(s, buf, buf_ind, stored_len, last);
}
else if(s.strategy==Z_FIXED||static_lenb==opt_lenb)
{
send_bits(s, (STATIC_TREES<<1)+last, 3);
compress_block(s, static_ltree, static_dtree);
}
else
{
send_bits(s, (DYN_TREES<<1)+last, 3);
send_all_trees(s, s.l_desc.max_code+1, s.d_desc.max_code+1, max_blindex+1);
compress_block(s, s.dyn_ltree, s.dyn_dtree);
}
//Assert (s.compressed_len == s.bits_sent, "bad compressed size");
// The above check is made mod 2^32, for files larger than 512 MB
// and unsigned int implemented on 32 bits.
init_block(s);
if(last!=0) bi_windup(s);
//Tracev((stderr,"\ncomprlen %lu(%lu) ", s.compressed_len>>3, s.compressed_len-7*eof));
}
// ===========================================================================
// Save the match info and tally the frequency counts. Return true if
// the current block must be flushed.
// dist: distance of matched string
// lc: match length-MIN_MATCH or unmatched char (if dist==0)
static bool _tr_tally(deflate_state s, uint dist, uint lc)
{
s.d_buf[s.last_lit]=(ushort)dist;
s.l_buf[s.last_lit++]=(byte)lc;
if(dist==0)
{
// lc is the unmatched char
s.dyn_ltree[lc].Freq++;
}
else
{
s.matches++;
// Here, lc is the match length - MIN_MATCH
dist--; // dist = match distance - 1
//Assert((ushort)dist < (ushort)MAX_DIST(s) &&
// (ushort)lc <= (ushort)(MAX_MATCH-MIN_MATCH) &&
// (ushort)(dist < 256 ? _dist_code[dist] : _dist_code[256+(dist>>7)]) < (ushort)D_CODES,
// "_tr_tally: bad match");
s.dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
s.dyn_dtree[(dist<256?_dist_code[dist]:_dist_code[256+(dist>>7)])].Freq++;
}
return (s.last_lit==s.lit_bufsize-1);
// We avoid equality with lit_bufsize because of wraparound at 64K
// on 16 bit machines and because stored blocks are restricted to
// 64K-1 bytes.
}
// ===========================================================================
// Send the block data compressed using the given Huffman trees
// ltree: literal tree
// dtree: distance tree
static void compress_block(deflate_state s, ct_data[] ltree, ct_data[] dtree)
{
uint dist; // distance of matched string
int lc; // match length or unmatched char (if dist == 0)
uint lx=0; // running index in l_buf
uint code; // the code to send
int extra; // number of extra bits to send
if(s.last_lit!=0)
{
do
{
dist=s.d_buf[lx];
lc=s.l_buf[lx++];
if(dist==0)
{
send_code(s, lc, ltree); // send a literal byte
//Tracecv(isgraph(lc), (stderr," '%c' ", lc));
}
else
{
// Here, lc is the match length - MIN_MATCH
code=_length_code[lc];
send_code(s, (int)(code+LITERALS+1), ltree); // send the length code
extra=extra_lbits[code];
if(extra!=0)
{
lc-=base_length[code];
send_bits(s, lc, extra); // send the extra length bits
}
dist--; // dist is now the match distance - 1
code=(dist<256?_dist_code[dist]:_dist_code[256+(dist>>7)]);
//Assert (code < D_CODES, "bad d_code");
send_code(s, (int)code, dtree); // send the distance code
extra=extra_dbits[code];
if(extra!=0)
{
dist-=(uint)base_dist[code];
send_bits(s, (int)dist, extra); // send the extra distance bits
}
} // literal or match pair ?
} while(lx<s.last_lit);
}
send_code(s, END_BLOCK, ltree);
s.last_eob_len=ltree[END_BLOCK].Len;
}
// ===========================================================================
// Reverse the first len bits of a code, using straightforward code (a faster
// method would use a table)
// IN assertion: 1 <= len <= 15
// code: the value to invert
// len: its bit length
static ushort bi_reverse(ushort code, int len)
{
ushort res=0;
do
{
res|=(ushort)(code&1);
code>>=1;
res<<=1;
} while(--len>0);
return (ushort)(res>>1);
}
// ===========================================================================
// Flush the bit buffer, keeping at most 7 bits in it.
static void bi_flush(deflate_state s)
{