-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluator.py
executable file
·280 lines (243 loc) · 11.5 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from operator import mod
import os
from pickle import FALSE, NONE, TRUE
import sys
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.data import DataLoader
from core.datasets import *
from tools.general.io_utils import *
from tools.general.Q_util import *
from tools.dataset.voc_utils import *
from tools.ai.log_utils import *
from tools.ai.torch_utils import *
from tools.ai.evaluate_utils import *
import core.models as fcnmodel
import dataset_root
import importlib
parser = argparse.ArgumentParser()
def get_params():
###############################################################################
# Dataset
###############################################################################
parser.add_argument('--dataset', default='voc12',
type=str, choices=['voc12', 'coco'])
parser.add_argument('--domain', default='train', type=str)
parser.add_argument(
'--Qmodel_path', default='/media/ders/mazhiming/SP_CAM_code/SPCAM/experiments/models/train_Q_/00.pth', type=str) #
parser.add_argument(
'--Cmodel_path', default='log/voc_dyrenum65_thr0.8_25ep/best_checkpoint.pth', type=str) #
parser.add_argument('--savepng', default=True, type=str2bool)
parser.add_argument('--savenpy', default=False, type=str2bool)
parser.add_argument('--ASAM', default=True, type=str2bool)
parser.add_argument('--tag', default='train', type=str)
parser.add_argument('--curtime', default='00', type=str)
args = parser.parse_args()
return args
class evaluator:
def __init__(self, dataset='voc12', domain='train', ASAM=True, save_np_path=None, savepng_path=None, muti_scale=False, th_list=list(np.arange(0.2, 0.5, 0.1)), refine_list=range(0, 50, 10)) -> None:
self.C_model = None
self.Q_model = None
self.args = None
self.ASAM = ASAM
if (muti_scale):
self.scale_list = [0.5, 1, 1.5, 2.0, -
0.5, -1, -1.5, -2.0] # - is flip
else:
self.scale_list = [1.0] # - is flip
self.th_list = th_list
self.refine_list = refine_list
self.parms = []
for renum in self.refine_list:
for th in self.th_list:
self.parms.append((renum, th))
class_num = 21 if dataset == 'voc12' else 81
self.meterlist = [Calculator_For_mIoU(
class_num) for x in self.parms]
self.save_png_path = savepng_path
self.save_np_path = save_np_path
if (self.save_png_path != None):
if not os.path.exists(self.save_png_path):
os.mkdir(self.save_png_path)
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
test_transform = transforms.Compose([
Normalize_For_Segmentation(imagenet_mean, imagenet_std),
Transpose_For_Segmentation()
])
if (dataset == 'voc12'):
valid_dataset = Dataset_For_Evaluation(
dataset_root.VOC_ROOT, domain, test_transform, dataset)
else:
print('no that dataset')
exit()
self.valid_loader = DataLoader(
valid_dataset, batch_size=1, num_workers=1, shuffle=False, drop_last=False)
def get_cam(self, images, ids, Qs):
with torch.no_grad():
cam_list = []
_, _, h, w = images.shape
for s, q in zip(self.scale_list, Qs):
target_size = (round(h * abs(s)), round(w * abs(s)))
scaled_images = F.interpolate(
images, target_size, mode='bilinear', align_corners=False)
H_, W_ = int(
np.ceil(target_size[0]/16.)*16), int(np.ceil(target_size[1]/16.)*16)
scaled_images = F.interpolate(
scaled_images, (H_, W_), mode='bilinear', align_corners=False)
if (s < 0):
scaled_images = torch.flip(
scaled_images, dims=[3]) # ?dims
if (self.ASAM):
logits, pred, convlist = self.C_model(scaled_images)
b, c, h, w = logits.shape
else:
logits, pred, convlist = self.C_model(scaled_images)
pred = F.softmax(logits, dim=1)
cam_list.append(torch.roll(pred, 1, 1))
return cam_list
def get_Q(self, images, ids):
_, _, h, w = images.shape
Q_list = []
affmat_list = []
for s in self.scale_list:
target_size = (round(h * abs(s)), round(w * abs(s)))
H_, W_ = int(
np.ceil(target_size[0]/16.)*16), int(np.ceil(target_size[1]/16.)*16)
scaled_images = F.interpolate(
images, (H_, W_), mode='bilinear', align_corners=False)
if (s < 0):
scaled_images = torch.flip(scaled_images, dims=[3]) # ?dims
pred = self.Q_model(scaled_images)
Q_list.append(pred)
affmat_list.append(calc_affmat(pred))
return Q_list, affmat_list
def get_mutiscale_cam(self, cam_list, Q_list, affmat_list, refine_time=0):
_, _, h, w = Q_list[self.scale_list.index(1.0)].shape
refine_cam_list = []
for cam, Q, affmat, s in zip(cam_list, Q_list, affmat_list, self.scale_list):
if (self.ASAM):
for i in range(refine_time):
cam = refine_with_affmat(cam, affmat)
cam = upfeat(cam, Q, 16, 16)
cam = F.interpolate(cam, (int(h), int(w)),
mode='bilinear', align_corners=False)
if (s < 0):
cam = torch.flip(cam, dims=[3]) # ?dims
refine_cam_list.append(cam)
refine_cam = torch.sum(torch.stack(refine_cam_list), dim=0)
return refine_cam
def getbest_miou(self, clear=True):
iou_list = []
for parm, meter in zip(self.parms, self.meterlist):
cur_iou = meter.get(clear=clear)[-2]
iou_list.append((cur_iou, parm))
iou_list.sort(key=lambda x: x[0], reverse=True)
return iou_list
def evaluate(self, C_model, Q_model=None, args=None):
self.C_model, self.Q_model, self.args = C_model, Q_model, args
self.C_model.eval()
if (self.ASAM):
self.Q_model.eval()
with torch.no_grad():
length = len(self.valid_loader)
for step, (images, image_ids, tags, gt_masks) in enumerate(self.valid_loader):
images = images.cuda()
gt_masks = gt_masks.cuda()
_, _, h, w = images.shape
if (self.ASAM):
Qs, affmats = self.get_Q(images, image_ids)
else:
Qs = [images for x in range(len(self.scale_list))]
affmats = [None for x in range(len(self.scale_list))]
cams_list = self.get_cam(images, image_ids, Qs)
mask = tags.unsqueeze(2).unsqueeze(3).cuda()
# if args['network_type']==cls:
for renum in self.refine_list:
refine_cams = self.get_mutiscale_cam(
cams_list, Qs, affmats, renum)
cams = (make_cam(refine_cams) * mask)
cams = F.interpolate(
cams, (int(h), int(w)), mode='bilinear', align_corners=False)
if (self.save_np_path != None):
np.save(os.path.join(self.save_np_path,
image_ids[0]+'.npy'), cams.cpu().numpy())
for th in self.th_list:
cams[:, 0] = th # predictions.max()
predictions = torch.argmax(cams, dim=1)
for batch_index in range(images.size()[0]):
pred_mask = get_numpy_from_tensor(
predictions[batch_index])
gt_mask = get_numpy_from_tensor( # cv2.imwrite("1.png",pred_mask*10)
gt_masks[batch_index])
gt_mask = cv2.resize(
gt_mask, (pred_mask.shape[1], pred_mask.shape[0]), interpolation=cv2.INTER_NEAREST)
# self.getbest_miou(clear=False) #,self.meterlist[10].get(clear=False)
self.meterlist[self.parms.index((renum, th))].add(
pred_mask, gt_mask)
if (self.save_png_path != None):
cur_save_path = os.path.join(
self.save_png_path, str(th))
if not os.path.exists(cur_save_path):
os.mkdir(cur_save_path)
cur_save_path = os.path.join(
cur_save_path, str(renum))
if not os.path.exists(cur_save_path):
os.mkdir(cur_save_path)
img_path = os.path.join(
cur_save_path, image_ids[batch_index]+'.png')
save_colored_mask(pred_mask, img_path)
sys.stdout.write(
'\r# Evaluation [{}/{}] = {:.2f}%'.format(step + 1, length, (step + 1) / length * 100))
sys.stdout.flush()
self.C_model.train()
if (self.save_png_path != None):
savetxt_path = os.path.join(self.save_png_path, "result.txt")
with open(savetxt_path, 'wb') as f:
for parm, meter in zip(self.parms, self.meterlist):
cur_iou = meter.get(clear=False)[-2]
f.write('{:>10.2f} {:>10.2f} {:>10.2f}\n'.format(
cur_iou, parm[0], parm[1]).encode())
ret = self.getbest_miou()
return ret
if __name__ == "__main__":
args = get_params()
log_tag = create_directory(f'./experiments/logs/{args.tag}/')
log_path = log_tag + f'/{args.curtime}.txt'
if (args.savepng or args.savenpy):
prediction_tag = create_directory(
f'./experiments/predictions/{args.tag}/')
prediction_path = create_directory(prediction_tag + f'{args.curtime}/')
log_func = lambda string='': log_print(string, log_path)
log_func('[i] {}'.format(args.tag))
log_func(str(args))
class_num = 21 if args.dataset == 'voc12' else 81
args.network = 'models.resnet38_eps'
args.num_classes = 20
args.network_type = 'eps'
model = getattr(importlib.import_module(args.network), 'Net')(args)
model = model.cuda()
model.train()
model.load_state_dict(torch.load(args.Cmodel_path))
model = nn.DataParallel(model)
if (args.ASAM):
Q_model = fcnmodel.SpixelNet1l_bn().cuda()
Q_model.load_state_dict(torch.load(args.Qmodel_path))
Q_model = nn.DataParallel(Q_model)
Q_model.eval()
else:
Q_model = None
_savepng_path = None
_savenpy_path = None
if (args.savepng):
_savepng_path = create_directory(prediction_path+'pseudo/')
if (args.savenpy):
_savenpy_path = create_directory(prediction_path+'camnpy/')
evaluatorA = evaluator(dataset='voc12', domain=args.domain, muti_scale=True, ASAM=args.ASAM,
save_np_path=_savenpy_path, savepng_path=_savepng_path, refine_list=[0, 20, 30, 40], th_list=[0.2, 0.3, 0.4])
ret = evaluatorA.evaluate(model, Q_model)
log_func(ret)