-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_eval_part_t.py
195 lines (164 loc) · 8.45 KB
/
train_eval_part_t.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import print_function
import os
import argparse
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from models.resnet import ResNet18
from models.wideresnet import WideResNet
from dataset.cifar10 import CIFAR10
from dataset.svhn import SVHN
from utils import *
parser = argparse.ArgumentParser(description='PyTorch Pixel-reweighted Adversarial Training')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=80, metavar='N',
help='number of epochs to train')
parser.add_argument('--weight-decay', '--wd', default=2e-4, type=float, metavar='W')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--epsilon', default=8/255,
help='maximum allowed perturbation', type=parse_fraction)
parser.add_argument('--low-epsilon', default=7/255,
help='maximum allowed perturbation for unimportant pixels',
type=parse_fraction)
parser.add_argument('--num-steps', default=10,
help='perturb number of steps')
parser.add_argument('--num-class', default=10,
help='number of classes')
parser.add_argument('--step-size', default=2/255,
help='perturb step size', type=parse_fraction)
parser.add_argument('--beta', default=6.0,
help='regularization, i.e., 1/lambda in TRADES')
parser.add_argument('--adjust-first', type=int, default=60,
help='adjust learning rate on which epoch in the first round')
parser.add_argument('--adjust-second', type=int, default=90,
help='adjust learning rate on which epoch in the second round')
parser.add_argument('--rand_init', type=bool, default=True,
help="whether to initialize adversarial sample with random noise")
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model-dir', default='./checkpoint/ResNet_18/PART_T',
help='directory of model for saving checkpoint')
parser.add_argument('--save-freq', default=10, type=int, metavar='N',
help='save frequency')
parser.add_argument('--save-weights', default=1, type=int, metavar='N',
help='save frequency for weighted matrix')
parser.add_argument('--data', type=str, default='CIFAR10', help='data source', choices=['CIFAR10', 'SVHN', 'TinyImagenet'])
parser.add_argument('--model', type=str, default='resnet', choices=['resnet', 'wideresnet'])
parser.add_argument('--warm-up', type=int, default=20, help='warm up epochs')
parser.add_argument('--cam', type=str, default='gradcam', choices=['gradcam', 'xgradcam', 'layercam'])
parser.add_argument('--attack', type=str, default='pgd', choices=['pgd', 'mma'])
args = parser.parse_args()
if args.data == 'CIFAR100':
args.num_class = 100
if args.data == 'TinyImagenet':
args.num_class = 200
def train(args, model, device, train_loader, optimizer, epoch, weighted_eps_list):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
X, y = Variable(data, requires_grad=True), Variable(target)
model.eval()
weighted_eps = weighted_eps_list[batch_idx]
model.train()
optimizer.zero_grad()
# calculate robust loss
loss = part_trades_loss(model=model,
x_natural=X,
y=y,
optimizer=optimizer,
weighted_eps = weighted_eps,
step_size=args.step_size,
perturb_steps=args.num_steps,
beta=args.beta)
loss.backward()
optimizer.step()
# print progress
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.2f}%)]\tLoss: {:.6f}'.format(
epoch, (batch_idx+1) * len(data), len(train_loader.dataset),
100. * (batch_idx+1) / len(train_loader), loss.item()))
def main():
# settings
setup_seed(args.seed)
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
# setup data loader
if args.data == 'CIFAR10':
train_loader = CIFAR10(train_batch_size=args.batch_size).train_data()
test_loader = CIFAR10(test_batch_size=args.batch_size).test_data()
if args.model == 'resnet':
model_dir = './checkpoint/CIFAR10/ResNet_18/PART_T'
model = ResNet18(num_classes=10).to(device)
elif args.model == 'wideresnet':
model_dir = './checkpoint/CIFAR10/WideResnet-34/PART_T'
model = WideResNet(34, 10, 10).to(device)
else:
raise ValueError("Unknown model")
elif args.data == 'SVHN':
args.step_size = 1/255
args.weight_decay = 0.0035
args.lr = 0.01
args.batch_size = 128
train_loader = SVHN(train_batch_size=args.batch_size).train_data()
test_loader = SVHN(test_batch_size=args.batch_size).test_data()
if args.model == 'resnet':
model_dir = './checkpoint/SVHN/ResNet_18/PART_T'
model = ResNet18(num_classes=10).to(device)
elif args.model == 'wideresnet':
model_dir = './checkpoint/SVHN/WideResnet-34/PART_T'
model = WideResNet(34, 10, 10).to(device)
else:
raise ValueError("Unknown model")
else:
raise ValueError("Unknown data")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
optimizer = optim.SGD(model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# warm up
print('warm up starts')
for epoch in range(1, args.warm_up + 1):
trades_train(args, model, device, train_loader, optimizer, epoch)
# save checkpoint
if epoch % args.save_freq == 0:
torch.save(model.state_dict(),
os.path.join(model_dir, 'pre_part_t_epoch{}.pth'.format(epoch)))
print('save the model')
print('================================================================')
print('warm up ends')
weighted_eps_list = save_cam(model, train_loader, device, args)
for epoch in range(1, args.epochs - args.warm_up + 1):
if epoch % args.save_weights == 0 and epoch != 1:
weighted_eps_list = save_cam(model, train_loader, device, args)
# adjust learning rate for SGD
adjust_learning_rate(args, optimizer, epoch)
# adversarial training
train(args, model, device, train_loader, optimizer, epoch, weighted_eps_list)
# evaluation on natural examples
print('================================================================')
# save checkpoint
if epoch % args.save_freq == 0:
torch.save(model.state_dict(),
os.path.join(model_dir, 'model-epoch{}.pth'.format(epoch)))
# evaluation on adversarial examples
print('PGD=============================================================')
eval_test(args, model, device, test_loader, mode='pgd')
print('MMA==============================================================')
eval_test(args, model, device, test_loader, mode='mma')
print('AA==============================================================')
eval_test(args, model, device, test_loader, mode='aa')
if __name__ == '__main__':
main()