-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
87 lines (75 loc) · 2.99 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import torch
import random
import numpy as np
from torch.utils.data import Dataset
class FMGdataset(Dataset):
def __init__(self,args,test_ratio=0.3,phase="train"):
self.model_name=args.model_name
self.channels=args.channels
self.actions=args.part_actions
self.action_dict={action_cls:idx for idx, action_cls in enumerate(self.actions)}
self.subjects=args.subindex
self.L_win=args.L_win
self.stride=args.stride
self.test_ratio=test_ratio
self.phase=phase
self.get_basedata(args)
def get_basedata(self,args):
if not isinstance(self.subjects,list):
self.subjects=[self.subjects]
data_paths=[os.path.join(args.data_root,"L{}_s{}".format(self.L_win,self.stride),
"S{}_A{}_I{}".format(sub+1,args.class_dict[act]+1,i+1))+".npy"
for sub in self.subjects for act in self.actions for i in range(args.repeat)]
datalist=[]
labellist=[]
for data_path in data_paths:
a_id=int(data_path.split("_")[-2][1:])-1
a_class=args.class_name[a_id]
datas=np.load(data_path)
for data in datas:
datalist.append(data)
labellist.append(a_class)
total_num=len(datalist)
self.train_datalist,self.train_labellist=[],[]
self.test_datalist,self.test_labellist=[],[]
random.seed(0)
test_idx=random.sample(range(0,total_num),int(total_num*self.test_ratio))
for idx, data in enumerate(datalist):
if idx in test_idx:
self.test_datalist.append(data)
self.test_labellist.append(labellist[idx])
else:
self.train_datalist.append(data)
self.train_labellist.append(labellist[idx])
print("Total number of sample:{},train:{},test:{}".format(len(datalist),len(self.train_datalist),len(self.test_datalist)))
def __len__(self):
if self.phase == "train":
return len(self.train_datalist)
else:
return len(self.test_datalist)
def __getitem__(self,idx):
if self.phase == 'train':
datalist=self.train_datalist
labellist=self.train_labellist
else:
datalist=self.test_datalist
labellist=self.test_labellist
#get data
w_data=datalist[idx]
w_data=w_data[:,self.channels]
#get label
a_class=labellist[idx]
label=np.zeros(len(self.actions),dtype=np.float32)
label[self.action_dict[a_class]]=1
return torch.as_tensor(w_data.astype(np.float32)),torch.from_numpy(label)
@staticmethod
def collate_fn(batch):
# return tuple(zip(*batch))
return batch
if __name__ == "__main__":
from model_config import build_args
args=build_args("GCN")
data=FMGdataset(args,phase="train")
w_data,label=data.__getitem__(0)
print(w_data.shape,label)