-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathcontent_agent.py
267 lines (225 loc) · 9.31 KB
/
content_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
from autogen import config_list_from_json
import autogen
import requests
from bs4 import BeautifulSoup
import json
from langchain.agents import initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain import PromptTemplate
import openai
from dotenv import load_dotenv
# Get API key
load_dotenv()
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
openai.api_key = os.getenv("OPENAI_API_KEY")
# Define research function
def search(query):
url = "https://google.serper.dev/search"
payload = json.dumps({
"q": query
})
headers = {
'X-API-KEY': 'ab179d0f00ae0bafe47f77e09e62b9f53b3f281d',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()
def scrape(url: str):
# scrape website, and also will summarize the content based on objective if the content is too large
# objective is the original objective & task that user give to the agent, url is the url of the website to be scraped
print("Scraping website...")
# Define the headers for the request
headers = {
'Cache-Control': 'no-cache',
'Content-Type': 'application/json',
}
# Define the data to be sent in the request
data = {
"url": url
}
# Convert Python object to JSON string
data_json = json.dumps(data)
# Send the POST request
response = requests.post(
"https://chrome.browserless.io/content?token=2db344e9-a08a-4179-8f48-195a2f7ea6ee", headers=headers, data=data_json)
# Check the response status code
if response.status_code == 200:
soup = BeautifulSoup(response.content, "html.parser")
text = soup.get_text()
print("CONTENTTTTTT:", text)
if len(text) > 8000:
output = summary(text)
return output
else:
return text
else:
print(f"HTTP request failed with status code {response.status_code}")
def summary(content):
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k-0613")
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n"], chunk_size=10000, chunk_overlap=500)
docs = text_splitter.create_documents([content])
map_prompt = """
Write a detailed summary of the following text for a research purpose:
"{text}"
SUMMARY:
"""
map_prompt_template = PromptTemplate(
template=map_prompt, input_variables=["text"])
summary_chain = load_summarize_chain(
llm=llm,
chain_type='map_reduce',
map_prompt=map_prompt_template,
combine_prompt=map_prompt_template,
verbose=True
)
output = summary_chain.run(input_documents=docs,)
return output
def research(query):
llm_config_researcher = {
"functions": [
{
"name": "search",
"description": "google search for relevant information",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Google search query",
}
},
"required": ["query"],
},
},
{
"name": "scrape",
"description": "Scraping website content based on url",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "Website url to scrape",
}
},
"required": ["url"],
},
},
],
"config_list": config_list}
researcher = autogen.AssistantAgent(
name="researcher",
system_message="Research about a given query, collect as many information as possible, and generate detailed research results with loads of technique details with all reference links attached; Add TERMINATE to the end of the research report;",
llm_config=llm_config_researcher,
)
user_proxy = autogen.UserProxyAgent(
name="User_proxy",
code_execution_config={"last_n_messages": 2, "work_dir": "coding"},
is_termination_msg=lambda x: x.get("content", "") and x.get(
"content", "").rstrip().endswith("TERMINATE"),
human_input_mode="TERMINATE",
function_map={
"search": search,
"scrape": scrape,
}
)
user_proxy.initiate_chat(researcher, message=query)
# set the receiver to be researcher, and get a summary of the research report
user_proxy.stop_reply_at_receive(researcher)
user_proxy.send(
"Give me the research report that just generated again, return ONLY the report & reference links", researcher)
# return the last message the expert received
return user_proxy.last_message()["content"]
# Define write content function
def write_content(research_material, topic):
editor = autogen.AssistantAgent(
name="editor",
system_message="You are a senior editor of an AI blogger, you will define the structure of a short blog post based on material provided by the researcher, and give it to the writer to write the blog post",
llm_config={"config_list": config_list},
)
writer = autogen.AssistantAgent(
name="writer",
system_message="You are a professional AI blogger who is writing a blog post about AI, you will write a short blog post based on the structured provided by the editor, and feedback from reviewer; After 2 rounds of content iteration, add TERMINATE to the end of the message",
llm_config={"config_list": config_list},
)
reviewer = autogen.AssistantAgent(
name="reviewer",
system_message="You are a world class hash tech blog content critic, you will review & critic the written blog and provide feedback to writer.After 2 rounds of content iteration, add TERMINATE to the end of the message",
llm_config={"config_list": config_list},
)
user_proxy = autogen.UserProxyAgent(
name="admin",
system_message="A human admin. Interact with editor to discuss the structure. Actual writing needs to be approved by this admin.",
code_execution_config=False,
is_termination_msg=lambda x: x.get("content", "") and x.get(
"content", "").rstrip().endswith("TERMINATE"),
human_input_mode="TERMINATE",
)
groupchat = autogen.GroupChat(
agents=[user_proxy, editor, writer, reviewer],
messages=[],
max_round=20)
manager = autogen.GroupChatManager(groupchat=groupchat)
user_proxy.initiate_chat(
manager, message=f"Write a blog about {topic}, here are the material: {research_material}")
user_proxy.stop_reply_at_receive(manager)
user_proxy.send(
"Give me the blog that just generated again, return ONLY the blog, and add TERMINATE in the end of the message", manager)
# return the last message the expert received
return user_proxy.last_message()["content"]
# Define content assistant agent
llm_config_content_assistant = {
"functions": [
{
"name": "research",
"description": "research about a given topic, return the research material including reference links",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The topic to be researched about",
}
},
"required": ["query"],
},
},
{
"name": "write_content",
"description": "Write content based on the given research material & topic",
"parameters": {
"type": "object",
"properties": {
"research_material": {
"type": "string",
"description": "research material of a given topic, including reference links when available",
},
"topic": {
"type": "string",
"description": "The topic of the content",
}
},
"required": ["research_material", "topic"],
},
},
],
"config_list": config_list}
writing_assistant = autogen.AssistantAgent(
name="writing_assistant",
system_message="You are a writing assistant, you can use research function to collect latest information about a given topic, and then use write_content function to write a very well written content; Reply TERMINATE when your task is done",
llm_config=llm_config_content_assistant,
)
user_proxy = autogen.UserProxyAgent(
name="User_proxy",
human_input_mode="TERMINATE",
function_map={
"write_content": write_content,
"research": research,
}
)
user_proxy.initiate_chat(
writing_assistant, message="write a blog about autogen multi AI agent framework")