forked from xionghc/Facial-Expression-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·166 lines (127 loc) · 4.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import tensorflow as tf
from utils import *
import os
import sys
EMOTIONS = ['angry', 'disgusted', 'fearful', 'happy', 'sad', 'surprised', 'neutral']
def deepnn(x):
x_image = tf.reshape(x, [-1, 48, 48, 1])
# conv1
W_conv1 = weight_variables([5, 5, 1, 64])
b_conv1 = bias_variable([64])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# pool1
h_pool1 = maxpool(h_conv1)
# norm1
norm1 = tf.nn.lrn(h_pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
# conv2
W_conv2 = weight_variables([3, 3, 64, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
norm2 = tf.nn.lrn(h_conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
h_pool2 = maxpool(norm2)
# Fully connected layer
W_fc1 = weight_variables([12 * 12 * 64, 384])
b_fc1 = bias_variable([384])
h_conv3_flat = tf.reshape(h_pool2, [-1, 12 * 12 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1)
# Fully connected layer
W_fc2 = weight_variables([384, 192])
b_fc2 = bias_variable([192])
h_fc2 = tf.matmul(h_fc1, W_fc2) + b_fc2
# linear
W_fc3 = weight_variables([192, 7])
b_fc3 = bias_variable([7])
y_conv = tf.add(tf.matmul(h_fc2, W_fc3), b_fc3)
return y_conv
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxpool(x):
return tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variables(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def train_model(_):
fer2013 = input_data('./data/fer2013/fer2013.csv')
max_train_steps = 30001
x = tf.placeholder(tf.float32, [None, 2304])
y_ = tf.placeholder(tf.float32, [None, 7])
y_conv = deepnn(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
for step in range(max_train_steps):
batch = fer2013.train.next_batch(50)
if step % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1]})
print('step %d, training accuracy %g' % (step, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
if step + 1 == max_train_steps:
saver.save(sess, './models/emotion_model', global_step=step + 1)
if step % 1000 == 0:
print('*Test accuracy %g' % accuracy.eval(feed_dict={
x: fer2013.validation.images, y_: fer2013.validation.labels}))
def predict(image=[[0.1] * 2304]):
x = tf.placeholder(tf.float32, [None, 2304])
y_conv = deepnn(x)
# init = tf.global_variables_initializer()
saver = tf.train.Saver()
probs = tf.nn.softmax(y_conv)
y_ = tf.argmax(probs)
with tf.Session() as sess:
# assert os.path.exists('/tmp/models/emotion_model')
ckpt = tf.train.get_checkpoint_state('./models')
print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('Restore ssss')
return sess.run(probs, feed_dict={x: image})
def image_to_tensor(image):
tensor = np.asarray(image).reshape(-1, 2304) * 1 / 255.0
return tensor
def valid_model():
x = tf.placeholder(tf.float32, [None, 2304])
y_conv = deepnn(x)
probs = tf.nn.softmax(y_conv)
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state('./models/')
with tf.Session() as sess:
print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('Restore model sucsses!!')
VALID_SETS = './valid_sets/'
files = os.listdir(VALID_SETS)
for file in files:
if file.endswith('.jpg'):
image_file = os.path.join(VALID_SETS, file)
image = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE)
tensor = image_to_tensor(image)
result = sess.run(probs, feed_dict={x: tensor})
print(file, EMOTIONS[result.argmax()])
def show_usage():
usage = ("*------------------------------------*\n"
"|Usage: python3 model.py <train|valid>|\n"
"*------------------------------------*")
print(usage)
if __name__ == '__main__':
args = sys.argv
if len(args) < 2:
show_usage()
exit()
if args[1] == 'train':
tf.app.run(main=train_model)
elif args[1] == 'valid':
valid_model()
else:
show_usage()